



Approval body for construction products and types of construction

**Bautechnisches Prüfamt** 

An institution established by the Federal and Laender Governments



# **European Technical Assessment**

ETA-19/0849 of 28 January 2020

English translation prepared by DIBt - Original version in German language

#### **General Part**

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Spitec Oy Injection system Lionfix, Lionfix N for concrete

Bonded fastener for use in concrete

Spitec Oy Kirvesmiehenkatu 6 00880 HELSINKI FINNLAND

Spitec Plant 1

31 pages including 3 annexes which form an integral part of this assessment

EAD 330499-01-0601



### European Technical Assessment ETA-19/0849 English translation prepared by DIBt

Page 2 of 31 | 28 January 2020

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.



## European Technical Assessment ETA-19/0849

Page 3 of 31 | 28 January 2020

English translation prepared by DIBt

#### **Specific Part**

#### 1 Technical description of the product

The "Spitec Oy Injection system Lionfix, Lionfix N for concrete" is a bonded anchor consisting of a cartridge with injection Lionfix or Lionfix N and a steel element. The steel element consists of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30 or reinforcing bar in the range of  $\varnothing$  8 to  $\varnothing$  32 mm or an internal threaded anchor rod IG-M6 to IG-M20.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

## 2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

#### 3 Performance of the product and references to the methods used for its assessment

#### 3.1 Mechanical resistance and stability (BWR 1)

| Essential characteristic                                                          | Performance             |
|-----------------------------------------------------------------------------------|-------------------------|
| Characteristic resistance to tension load                                         | See Annex               |
| (static and quasi-static loading)                                                 | C 1 to C 3, C 5, C 7    |
| Characteristic resistance to shear load                                           | See Annex               |
| (static and quasi-static loading)                                                 | C1, C 4, C 6, C 8       |
| Displacements                                                                     | See Anne                |
| (static and quasi-static loading)                                                 | C 9 to C 11             |
| Characteristic resistance and displacements for seismic                           | See Anne                |
| performance categories C1                                                         | C 12 to C 16            |
| Characteristic resistance and displacements for seismic performance categories C2 | No performance assessed |
| Durability                                                                        | See Annex B 1           |

#### 3.2 Hygiene, health and the environment (BWR 3)

| Essential characteristic                                 | Performance             |
|----------------------------------------------------------|-------------------------|
| Content, emission and/or release of dangerous substances | No performance assessed |



## European Technical Assessment ETA-19/0849

Page 4 of 31 | 28 January 2020

English translation prepared by DIBt

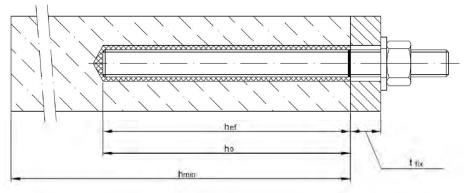
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

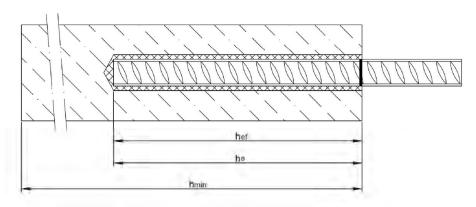
The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

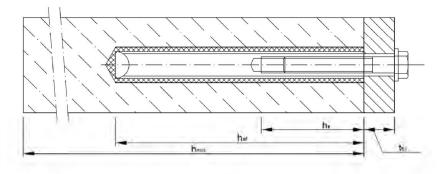
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 28 January 2020 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department


beglaubigt: Baderschneider








## Installation reinforcing bar Ø8 up to Ø32



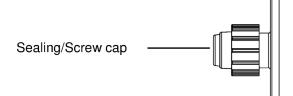
## Installation internal threaded anchor rod IG-M6 up to IG-M20



t<sub>fix</sub> = thickness of fixture

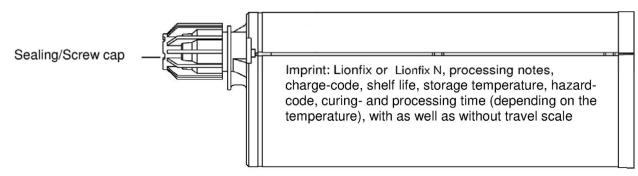
 $h_{ef}$  = effective anchorage depth

 $h_0$  = depth of drill hole

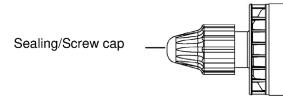

 $h_{min}$  = minimum thickness of member

| Spitec Oy Injection system Lionfix, Lionfix N for concrete |           |
|------------------------------------------------------------|-----------|
| Product description Installed condition                    | Annex A 1 |
|                                                            |           |



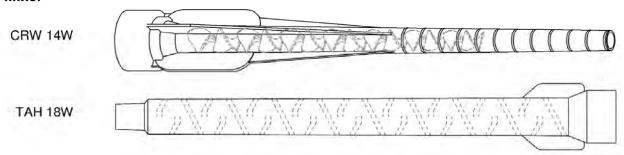

### Cartridge: Lionfix or Lionfix N

150 ml, 280 ml, 300 ml up to 333 ml and 380 ml up to 420 ml cartridge (Type: coaxial)




Imprint: Lionfix or Lionfix N, processing notes, charge-code, shelf life, storage temperature, hazard-code, curing- and processing time (depending on the temperature), with as well as without travel scale

## 235 ml, 345 ml up to 360 ml and 825 ml cartridge (Type: "side-by-side")

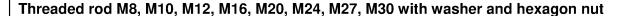


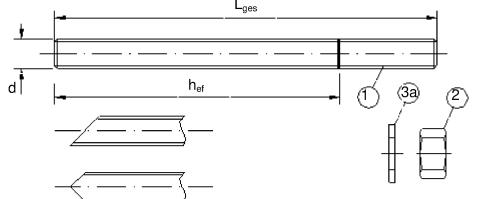

### 165 ml and 300 ml cartridge (Type: "foil tube")



Imprint: Lionfix or Lionfix N, processing notes, charge-code, shelf life, storage temperature, hazard-code, curing- and processing time (depending on the temperature), with as well as without travel scale

#### Static Mixer

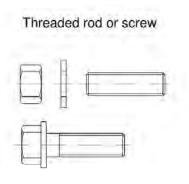


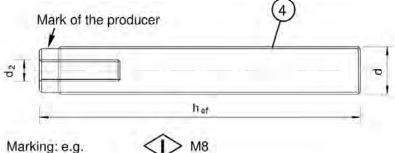


Spitec Oy Injection system Lionfix, Lionfix N for concrete

Product description
Injection system

Annex A 2






Commercial standard threaded rod with:

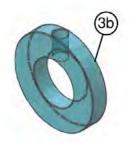
- Materials, dimensions and mechanical properties acc.
  Table A1
- Inspection certificate 3.1 acc. to EN 10204:2004
- Marking of embedment depth

## Internal threaded anchor rod IG-M6, IG-M8, IG-M10, IG-M12, IG-M16, IG-M20





narking: e.g.


Marking Internal thread

Mark

M8 Thread size (Internal thread)
A4 additional mark for stainless steel

HCR additional mark for high-corrosion resistance steel

## Filling washer and mixer reduction nozzle for filling the annular gap between anchor rod and fixture

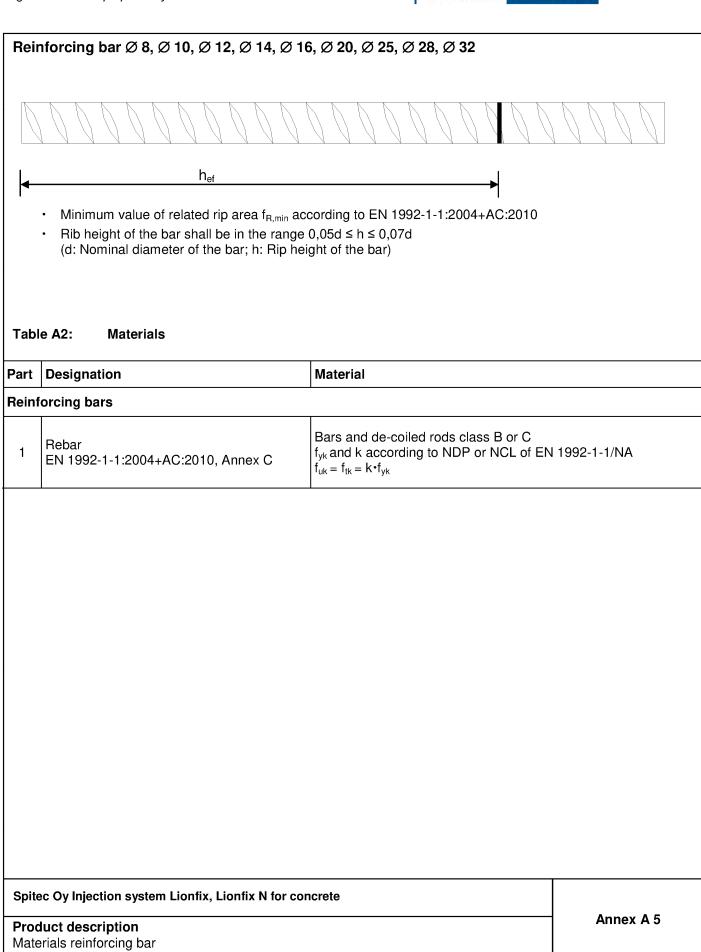




Spitec Oy Injection system Lionfix, Lionfix N for concrete

**Product description** 

Threaded rod, internal threaded rod and filling washer


Annex A 3



| art                                                                                                                                                    | Designation                                                                                                                                                                              | Material                                                                                                                                                                                                                                                                                                                    |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                       |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                                                                                                        | I, zinc plated (Steel acc. to E                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                             |                                                                                                                               | 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                       |  |  |
|                                                                                                                                                        |                                                                                                                                                                                          | cc. to EN ISO 4042:1999                                                                                                                                                                                                                                                                                                     |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                       |  |  |
|                                                                                                                                                        | ot-dip galvanised ≥ 40 µm a                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                             |                                                                                                                               | NISO 10684:2004+                                                                                                                                                                                                                                                                                                                                                                                                                                        | -AC:2009 or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                       |  |  |
| SI                                                                                                                                                     | nerardized ≥ 45 μm a<br>T                                                                                                                                                                | cc. to EN ISO 17668:2016                                                                                                                                                                                                                                                                                                    | )                                                                                                                             | Characteristic                                                                                                                                                                                                                                                                                                                                                                                                                                          | Characteristic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Elongation at                                                                                                                                                         |  |  |
|                                                                                                                                                        |                                                                                                                                                                                          | Property class                                                                                                                                                                                                                                                                                                              |                                                                                                                               | tensile strength                                                                                                                                                                                                                                                                                                                                                                                                                                        | yield strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | fracture                                                                                                                                                              |  |  |
|                                                                                                                                                        |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                             | 4.6                                                                                                                           | f <sub>uk</sub> = 400 N/mm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                 | f <sub>vk</sub> = 240 N/mm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A <sub>5</sub> > 8%                                                                                                                                                   |  |  |
| 4                                                                                                                                                      | Throughod rod                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                             |                                                                                                                               | f <sub>uk</sub> = 400 N/mm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                 | f <sub>vk</sub> = 320 N/mm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A <sub>5</sub> > 8%                                                                                                                                                   |  |  |
| 1                                                                                                                                                      | Threaded rod                                                                                                                                                                             | acc. to                                                                                                                                                                                                                                                                                                                     |                                                                                                                               | f <sub>uk</sub> = 500 N/mm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                 | $f_{yk} = 300 \text{ N/mm}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A <sub>5</sub> > 8%                                                                                                                                                   |  |  |
|                                                                                                                                                        |                                                                                                                                                                                          | EN ISO 898-1:2013                                                                                                                                                                                                                                                                                                           |                                                                                                                               | f <sub>uk</sub> = 500 N/mm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                 | $f_{vk} = 400 \text{ N/mm}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A <sub>5</sub> > 8%                                                                                                                                                   |  |  |
|                                                                                                                                                        |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                             |                                                                                                                               | f <sub>uk</sub> = 800 N/mm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                 | $f_{vk} = 640 \text{ N/mm}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A <sub>5</sub> ≥ 8%                                                                                                                                                   |  |  |
|                                                                                                                                                        |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                             |                                                                                                                               | =                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 75 = 0 /8                                                                                                                                                             |  |  |
| 2                                                                                                                                                      | Hexagon nut                                                                                                                                                                              | acc. to                                                                                                                                                                                                                                                                                                                     | <u>4</u><br>5                                                                                                                 | for threaded rod c                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                       |  |  |
| _                                                                                                                                                      | Hexagon nut                                                                                                                                                                              | EN ISO 898-2:2012                                                                                                                                                                                                                                                                                                           | 8                                                                                                                             | for threaded rod c                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                       |  |  |
|                                                                                                                                                        |                                                                                                                                                                                          | Steel, zinc plated, hot-di                                                                                                                                                                                                                                                                                                  |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                       |  |  |
| 3а                                                                                                                                                     | Washer                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                             |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N ISO 7094:20                                                                                                                                                         |  |  |
| 3b Filling washer (e.g.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000 Steel, zinc plated, hot-dip galvanised or sherardized |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                             |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                       |  |  |
| UU                                                                                                                                                     |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                             |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                       |  |  |
| 00                                                                                                                                                     |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                             |                                                                                                                               | Characteristic                                                                                                                                                                                                                                                                                                                                                                                                                                          | Characteristic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Elongation at                                                                                                                                                         |  |  |
|                                                                                                                                                        |                                                                                                                                                                                          | Property class                                                                                                                                                                                                                                                                                                              |                                                                                                                               | tensile strength                                                                                                                                                                                                                                                                                                                                                                                                                                        | yield strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | fracture                                                                                                                                                              |  |  |
| 4                                                                                                                                                      | Internal threaded anchor rod                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                             | 5.8                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                         | yield strength $f_{yk} = 400 \text{ N/mm}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | fracture A <sub>5</sub> > 8%                                                                                                                                          |  |  |
| 4<br>Stair                                                                                                                                             | Internal threaded anchor rod                                                                                                                                                             | Property class  acc. to EN ISO 898-1:2013  01 / 1.4307 / 1.4311 / 1.45                                                                                                                                                                                                                                                      | 8.8<br>67 or 1                                                                                                                | tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ .4541, acc. to EN                                                                                                                                                                                                                                                                                                                                                          | yield strength<br>f <sub>yk</sub> = 400 N/mm <sup>2</sup><br>f <sub>yk</sub> = 640 N/mm <sup>2</sup><br>10088-1:2014)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | fracture                                                                                                                                                              |  |  |
| 4<br>Stair                                                                                                                                             | Internal threaded anchor rod                                                                                                                                                             | Property class  acc. to EN ISO 898-1:2013  01 / 1.4307 / 1.4311 / 1.45 01 / 1.4404 / 1.4571 / 1.43 (Material 1.4529 or 1.456)                                                                                                                                                                                               | 8.8<br>67 or 1<br>62 or 1                                                                                                     | tensile strength<br>f <sub>uk</sub> = 500 N/mm <sup>2</sup><br>f <sub>uk</sub> = 800 N/mm <sup>2</sup><br>.4541, acc. to EN -<br>.4578, acc. to EN -<br>to EN 10088-1: 20                                                                                                                                                                                                                                                                               | yield strength<br>f <sub>yk</sub> = 400 N/mm <sup>2</sup><br>f <sub>yk</sub> = 640 N/mm <sup>2</sup><br>10088-1:2014)<br>10088-1:2014)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | fracture A <sub>5</sub> > 8% A <sub>5</sub> > 8%                                                                                                                      |  |  |
| 4<br>Stair                                                                                                                                             | Internal threaded anchor rod  nless steel A2 (Material 1.430 nless steel A4 (Material 1.440                                                                                              | Property class  acc. to EN ISO 898-1:2013  01 / 1.4307 / 1.4311 / 1.45 01 / 1.4404 / 1.4571 / 1.43                                                                                                                                                                                                                          | 8.8<br>67 or 1<br>62 or 1<br>5, acc.                                                                                          | tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ .4541, acc. to EN .4578, acc. to EN to EN 10088-1: 20 Characteristic tensile strength                                                                                                                                                                                                                                                                                      | yield strength  f <sub>yk</sub> = 400 N/mm <sup>2</sup> f <sub>yk</sub> = 640 N/mm <sup>2</sup> 10088-1:2014) 10088-1:2014) 14)  Characteristic yield strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | fracture A <sub>5</sub> > 8%                                                                                                                                          |  |  |
| 4<br>Stair                                                                                                                                             | Internal threaded anchor rod  nless steel A2 (Material 1.430 nless steel A4 (Material 1.440                                                                                              | Property class  acc. to EN ISO 898-1:2013  01 / 1.4307 / 1.4311 / 1.45 01 / 1.4404 / 1.4571 / 1.43 (Material 1.4529 or 1.456)  Property class                                                                                                                                                                               | 8.8<br>67 or 1<br>62 or 1<br>5, acc.                                                                                          | tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ .4541, acc. to EN .4578, acc. to EN to EN 10088-1: 20 Characteristic tensile strength $f_{uk} = 500 \text{ N/mm}^2$                                                                                                                                                                                                                                                        | yield strength  f <sub>yk</sub> = 400 N/mm <sup>2</sup> f <sub>yk</sub> = 640 N/mm <sup>2</sup> 10088-1:2014)  10088-1:2014)  14)  Characteristic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | fracture $A_5 > 8\%$ $A_5 > 8\%$                                                                                                                                      |  |  |
| 4<br>Stair<br>Stair                                                                                                                                    | Internal threaded anchor rod  nless steel A2 (Material 1.430 nless steel A4 (Material 1.440 n corrosion resistance steel                                                                 | Property class  acc. to EN ISO 898-1:2013  01 / 1.4307 / 1.4311 / 1.45 01 / 1.4404 / 1.4571 / 1.43 (Material 1.4529 or 1.456)  Property class  acc. to                                                                                                                                                                      | 8.8<br>67 or 1<br>62 or 1<br>5, acc.                                                                                          | tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ .4541, acc. to EN .4578, acc. to EN to EN 10088-1: 20 Characteristic tensile strength                                                                                                                                                                                                                                                                                      | yield strength  f <sub>yk</sub> = 400 N/mm <sup>2</sup> f <sub>yk</sub> = 640 N/mm <sup>2</sup> 10088-1:2014) 10088-1:2014) 14)  Characteristic yield strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | fracture $A_5 > 8\%$ $A_5 > 8\%$ Elongation at fracture                                                                                                               |  |  |
| 4<br>taii<br>taii                                                                                                                                      | Internal threaded anchor rod  nless steel A2 (Material 1.430 nless steel A4 (Material 1.440 n corrosion resistance steel                                                                 | Property class  acc. to EN ISO 898-1:2013  01 / 1.4307 / 1.4311 / 1.45 01 / 1.4404 / 1.4571 / 1.43 (Material 1.4529 or 1.456)  Property class                                                                                                                                                                               | 8.8<br>67 or 1<br>62 or 1<br>5, acc.                                                                                          | tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ .4541, acc. to EN .4578, acc. to EN to EN 10088-1: 20 Characteristic tensile strength $f_{uk} = 500 \text{ N/mm}^2$                                                                                                                                                                                                                                                        | yield strength  f <sub>yk</sub> = 400 N/mm <sup>2</sup> f <sub>yk</sub> = 640 N/mm <sup>2</sup> 10088-1:2014) 10088-1:2014) 14)  Characteristic yield strength  f <sub>yk</sub> = 210 N/mm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | fracture $A_5 > 8\%$ $A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$                                                                                                 |  |  |
| 4<br>taii<br>taii                                                                                                                                      | Internal threaded anchor rod  nless steel A2 (Material 1.430 nless steel A4 (Material 1.440 n corrosion resistance steel                                                                 | Property class  acc. to EN ISO 898-1:2013  01 / 1.4307 / 1.4311 / 1.45 01 / 1.4404 / 1.4571 / 1.43 (Material 1.4529 or 1.456) Property class  acc. to EN ISO 3506-1:2009                                                                                                                                                    | 8.8<br>67 or 1<br>62 or 1<br>5, acc.<br>50<br>70<br>80                                                                        | tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ $.4541, \text{ acc. to EN}^2$ $.4578, \text{ acc. to EN}^2$ to EN 10088-1: 20 Characteristic tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$                                                                                                                                                                                                  | yield strength  fyk = 400 N/mm²  fyk = 640 N/mm²  10088-1:2014) 10088-1:2014) 14)  Characteristic yield strength  fyk = 210 N/mm²  fyk = 450 N/mm²  fyk = 600 N/mm²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | fracture $A_5 > 8\%$ $A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$                                                                                   |  |  |
| taii<br>taii<br>igh                                                                                                                                    | Internal threaded anchor rod  nless steel A2 (Material 1.430 nless steel A4 (Material 1.440 n corrosion resistance steel                                                                 | Property class  acc. to EN ISO 898-1:2013  01 / 1.4307 / 1.4311 / 1.45 01 / 1.4404 / 1.4571 / 1.43 (Material 1.4529 or 1.456)  Property class  acc. to EN ISO 3506-1:2009  acc. to                                                                                                                                          | 8.8<br>67 or 1<br>62 or 1<br>5, acc.<br>50<br>70<br>80<br>50                                                                  | tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ $.4541, \text{ acc. to EN}$ $.4578, \text{ acc. to EN}$ to EN 10088-1: 20 Characteristic tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$                                                                                                                                                                        | yield strength  fyk = 400 N/mm²  fyk = 640 N/mm²  10088-1:2014) 10088-1:2014)  Characteristic yield strength  fyk = 210 N/mm²  fyk = 450 N/mm²  fyk = 600 N/mm²  lass 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | fracture $A_5 > 8\%$ $A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$                                                                                   |  |  |
| 4<br>Stair<br>Stair<br>High                                                                                                                            | Internal threaded anchor rod  nless steel A2 (Material 1.430 nless steel A4 (Material 1.440 ncorrosion resistance steel  Threaded rod <sup>1)3)</sup>                                    | Property class  acc. to EN ISO 898-1:2013  01 / 1.4307 / 1.4311 / 1.45 01 / 1.4404 / 1.4571 / 1.43 (Material 1.4529 or 1.456) Property class  acc. to EN ISO 3506-1:2009                                                                                                                                                    | 8.8<br>67 or 1<br>62 or 1<br>5, acc.<br>50<br>70<br>80<br>50<br>70                                                            | tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ $.4541, \text{ acc. to EN}$ $.4578, \text{ acc. to EN}$ to EN 10088-1: 20 Characteristic tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ for threaded rod c                                                                                                                                                     | yield strength  fyk = 400 N/mm²  fyk = 640 N/mm²  10088-1:2014) 10088-1:2014) 14)  Characteristic yield strength  fyk = 210 N/mm²  fyk = 450 N/mm²  Ityk = 600 N/mm²  Ityk = 600 N/mm²  Ityk = 500 N/mm²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | fracture $A_5 > 8\%$ $A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$                                                                                   |  |  |
| 4<br>Stair<br>Stair<br>High                                                                                                                            | Internal threaded anchor rod  nless steel A2 (Material 1.430 nless steel A4 (Material 1.440 ncorrosion resistance steel  Threaded rod <sup>1)3)</sup>                                    | Property class  acc. to EN ISO 898-1:2013  01 / 1.4307 / 1.4311 / 1.45  01 / 1.4404 / 1.4571 / 1.43  (Material 1.4529 or 1.456)  Property class  acc. to EN ISO 3506-1:2009  A2: Material 1.4301 / 1.4  A4: Material 1.4401 / 1.4  HCR: Material 1.4529 or                                                                  | 8.8<br>67 or 1<br>62 or 1<br>5, acc.<br>50<br>70<br>80<br>50<br>70<br>80<br>1307 / 1<br>1404 / 1                              | tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ .4541, acc. to EN .4578, acc. to EN .10088-1: 20 Characteristic tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ for threaded rod c for threaded rod c for threaded rod c .4311 / 1.4567 or .4571 / 1.4362 or .5, acc. to EN 10088                                                                                                             | yield strength $f_{yk} = 400 \text{ N/mm}^2$ $f_{yk} = 640 \text{ N/mm}^2$ $10088-1:2014)$ $10088-1:2014)$ $14)$ Characteristic yield strength $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$ $f_{yk} = 600 \text{ N/mm}^2$ lass $50$ lass $80$ $1.4541$ , acc. to EN $1.4578$ , acc. to EN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | fracture $A_5 > 8\%$ $A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 1:2014$ $10088-1:2014$                       |  |  |
| 4 Stail Stail High                                                                                                                                     | Internal threaded anchor rod  nless steel A2 (Material 1.430 nless steel A4 (Material 1.440 n corrosion resistance steel  Threaded rod <sup>1)3)</sup> Hexagon nut <sup>1)3)</sup>       | Property class  acc. to EN ISO 898-1:2013  01 / 1.4307 / 1.4311 / 1.45  01 / 1.4404 / 1.4571 / 1.43  (Material 1.4529 or 1.456)  Property class  acc. to EN ISO 3506-1:2009  A2: Material 1.4301 / 1.4  A4: Material 1.4401 / 1.4                                                                                           | 8.8<br>67 or 1<br>62 or 1<br>5, acc.<br>50<br>70<br>80<br>1307 / 7<br>1404 / 7<br>1.4566<br>EN IS                             | tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ .4541, acc. to EN .4578, acc. to EN .10088-1: 20 Characteristic tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ for threaded rod c for threaded rod c for threaded rod c .4311 / 1.4567 or .4571 / 1.4362 or .5, acc. to EN 10086 O 7089:2000, EN IS                                                            | yield strength $f_{yk} = 400 \text{ N/mm}^2$ $f_{yk} = 640 \text{ N/mm}^2$ $10088-1:2014)$ $10088-1:2014)$ $14)$ Characteristic yield strength $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$ $f_{yk} = 600 \text{ N/mm}^2$ lass $50$ lass $70$ lass $80$ $1.4541$ , acc. to EN $1.4578$ , acc. to EN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | fracture $A_5 > 8\%$ $A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 1:2014$ $10088-1:2014$                       |  |  |
| 4 Stain Stain Stain Stain 1 1                                                                                                                          | Internal threaded anchor rod  nless steel A2 (Material 1.430 nless steel A4 (Material 1.440 ncorrosion resistance steel  Threaded rod <sup>1)3)</sup> Hexagon nut <sup>1)3)</sup> Washer | Property class  acc. to EN ISO 898-1:2013  01 / 1.4307 / 1.4311 / 1.45 01 / 1.4404 / 1.4571 / 1.43 (Material 1.4529 or 1.456)  Property class  acc. to EN ISO 3506-1:2009  A2: Material 1.4301 / 1.4 A4: Material 1.4401 / 1.4 HCR: Material 1.4529 or (e.g.: EN ISO 887:2006,                                              | 8.8<br>67 or 1<br>62 or 1<br>5, acc.<br>50<br>70<br>80<br>1307 / 7<br>1404 / 7<br>1.4566<br>EN IS                             | tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ .4541, acc. to EN .4578, acc. to EN .50 EN 10088-1: 20 Characteristic tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ for threaded rod c for threaded rod c for threaded rod c .4311 / 1.4567 or .4571 / 1.4362 or .50, acc. to EN 10088 O 7089:2000, EN IS ion resistance stee Characteristic                  | yield strength  fyk = 400 N/mm²  fyk = 640 N/mm²  10088-1:2014) 10088-1:2014) 14)  Characteristic yield strength  fyk = 210 N/mm²  fyk = 450 N/mm²  In the strength of the str | fracture $A_5 > 8\%$ $A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$ 10088-1:2014 10088-1:2014 Elongation at |  |  |
| 4 Stain Stain Iligh  2  3a  3b                                                                                                                         | Internal threaded anchor rod  nless steel A2 (Material 1.430 nless steel A4 (Material 1.440 ncorrosion resistance steel  Threaded rod 1)3)  Hexagon nut 1)3)  Washer  Filling washer     | Property class  acc. to EN ISO 898-1:2013  01 / 1.4307 / 1.4311 / 1.45  01 / 1.4404 / 1.4571 / 1.43  (Material 1.4529 or 1.456)  Property class  acc. to EN ISO 3506-1:2009  A2: Material 1.4301 / 1.4  A4: Material 1.4401 / 1.4  HCR: Material 1.4529 or (e.g.: EN ISO 887:2006, Stainless steel A4, High  Property class | 8.8<br>67 or 1<br>62 or 1<br>5, acc.<br>50<br>70<br>80<br>50<br>70<br>80<br>1307 / 1<br>1404 / 1<br>1.456<br>EN IS<br>corros  | tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ .4541, acc. to EN .4578, acc. to EN .50 EN 10088-1: 20 Characteristic tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ for threaded rod c for threaded rod c for threaded rod c .4311 / 1.4567 or .4571 / 1.4362 or .50, acc. to EN 10088 O 7089:2000, EN 150 on resistance stee Characteristic tensile strength | yield strength $f_{yk} = 400 \text{ N/mm}^2$ $f_{yk} = 640 \text{ N/mm}^2$ $10088-1:2014)$ $10088-1:2014)$ $14)$ $Characteristic yield strength$ $f_{yk} = 210 \text{ N/mm}^2$ $f_{yk} = 450 \text{ N/mm}^2$ $f_{yk} = 600 \text{ N/mm}^2$ $lass 50$ $lass 50$ $lass 70$ $lass 80$ $1.4541, acc. to EN$ $1.4578, acc. to EN$ $3-1: 2014$ $SO 7093:2000 \text{ or E}$ $Characteristic yield strength$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | fracture $A_5 > 8\%$ $A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$ $A_5 \ge 8\%$ 10088-1:2014 10088-1:2014 Elongation at fracture      |  |  |
| 4 Stair Stair Iligh  2                                                                                                                                 | Internal threaded anchor rod  nless steel A2 (Material 1.430 nless steel A4 (Material 1.440 ncorrosion resistance steel  Threaded rod <sup>1)3)</sup> Hexagon nut <sup>1)3)</sup> Washer | Property class  acc. to EN ISO 898-1:2013  21 / 1.4307 / 1.4311 / 1.45 21 / 1.4404 / 1.4571 / 1.45 21 / 1.4404 / 1.4571 / 1.45 22 Or 1.456  Property class  acc. to EN ISO 3506-1:2009  A2: Material 1.4301 / 1.4 A4: Material 1.4401 / 1.4 HCR: Material 1.4529 or (e.g.: EN ISO 887:2006, Stainless steel A4, High        | 8.8<br>67 or 1<br>62 or 1<br>5, acc.<br>50<br>70<br>80<br>50<br>70<br>80<br>1307 / 1<br>1404 / 2<br>1.456:<br>EN IS<br>corros | tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ .4541, acc. to EN .4578, acc. to EN .50 EN 10088-1: 20 Characteristic tensile strength $f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 700 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$ for threaded rod c for threaded rod c for threaded rod c .4311 / 1.4567 or .4571 / 1.4362 or .50, acc. to EN 10088 O 7089:2000, EN IS ion resistance stee Characteristic                  | yield strength  fyk = 400 N/mm²  fyk = 640 N/mm²  10088-1:2014) 10088-1:2014) 14)  Characteristic yield strength  fyk = 210 N/mm²  fyk = 450 N/mm²  In the strength of the str | fracture $A_5 > 8\%$ $A_5 > 8\%$ Elongation at fracture $A_5 \ge 8\%$ 10088-1:2014 10088-1:2014 Elongation at |  |  |

| Spitec Oy Injection system Lionfix, Lionfix N for concrete            |           |
|-----------------------------------------------------------------------|-----------|
| Product description  Materials threaded rod and internal threaded rod | Annex A 4 |







#### Specifications of intended use

### Anchorages subject to:

- Static and guasi-static loads: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Seismic action for Performance Category C1: M8 to M30, Rebar Ø8 to Ø32.

#### Base materials:

- Compacted, reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013 + A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A1:2016.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.

#### **Temperature Range:**

- I: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: 40 °C to +80 °C (max long term temperature +50 °C and max short term temperature +80 °C)
- III: 40 °C to +120 °C (max long term temperature +72 °C and max short term temperature +120 °C)

#### Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials).
- For all other conditions according to EN 1993-1-4:2006+A1:2015 corresponding to corrosion resistance class:
  - Stainless steel Stahl A2 according to Annex A 4, Table A1: CRC II
  - Stainless steel Stahl A4 according to Annex A 4, Table A1: CRC III
  - High corrosion resistance steel HCR according to Annex A 4, Table A1: CRC V

#### Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
  position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to
  reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- The anchorages are designed in accordance to EN 1992-4:2018 and Technical Report TR055, Edition February 2018

#### Installation:

- Dry or wet concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Flooded holes (not sea water): M8 to M16, Rebar Ø8 to Ø16, IG-M6 to IG-M10.
- · Hole drilling by hammer (HD), hollow (HDB) or compressed air drill mode (CD).
- · Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- The injection mortar is assessed for installation at minimum concrete temperature of -10°C resp. -20°C, where subsequently the temperature in the concrete does not rise at a rapid rate, i.e. from the minimum installation temperature to 24°C within a 12-hour period.

| Spitec Oy Injection system Lionfix, Lionfix N for concrete | . 5.      |
|------------------------------------------------------------|-----------|
| Intended Use                                               | Annex B 1 |
| Specifications                                             |           |



| Table B1: Installation parameters for threaded rod                                        |                            |     |     |     |     |     |     |     |     |
|-------------------------------------------------------------------------------------------|----------------------------|-----|-----|-----|-----|-----|-----|-----|-----|
| Anchor size                                                                               |                            | М8  | M10 | M12 | M16 | M20 | M24 | M27 | M30 |
| Outer diameter of anchor                                                                  | d <sub>nom</sub> [mm] =    | 8   | 10  | 12  | 16  | 20  | 24  | 27  | 30  |
| Nominal drill hole diameter                                                               | d <sub>0</sub> [mm] =      | 10  | 12  | 14  | 18  | 24  | 28  | 32  | 35  |
| Effective embedment death                                                                 | h <sub>ef,min</sub> [mm] = | 60  | 60  | 70  | 80  | 90  | 96  | 108 | 120 |
| Effective embedment depth                                                                 | h <sub>ef,max</sub> [mm] = | 160 | 200 | 240 | 320 | 400 | 480 | 540 | 600 |
| Diameter of clearance hole in the fixture                                                 | d <sub>f</sub> [mm] ≤      | 9   | 12  | 14  | 18  | 22  | 26  | 30  | 33  |
| Diameter of steel brush                                                                   | d <sub>b</sub> [mm] ≥      | 12  | 14  | 16  | 20  | 26  | 30  | 34  | 37  |
| Maximum torque moment                                                                     | T <sub>inst</sub> [Nm] ≤   | 10  | 20  | 40  | 80  | 120 | 160 | 180 | 200 |
| Minimum thickness of member $h_{min}$ [mm] $h_{ef} + 30$ mm $\geq 100$ mm $h_{ef} + 2d_0$ |                            |     |     |     |     |     |     |     |     |
| Minimum spacing                                                                           | s <sub>min</sub> [mm]      | 40  | 50  | 60  | 80  | 100 | 120 | 135 | 150 |
| Minimum edge distance                                                                     | c <sub>min</sub> [mm]      | 40  | 50  | 60  | 80  | 100 | 120 | 135 | 150 |

## Table B2: Installation parameters for rebar

| Rebar size                                        | Ø8                    | Ø 10 | Ø 12          | Ø 14 | Ø 16 | Ø 20 | Ø 25                              | Ø 28 | Ø 32 |      |
|---------------------------------------------------|-----------------------|------|---------------|------|------|------|-----------------------------------|------|------|------|
| Outer diameter of anchor                          | $d_{nom} [mm] =$      | 8    | 10            | 12   | 14   | 16   | 20                                | 25   | 28   | 32   |
| Nominal drill hole diameter d <sub>0</sub> [mm] = |                       | 12   | 14            | 16   | 18   | 20   | 24                                | 32   | 35   | 40   |
| Effective embedment depth                         | $h_{ef,min}$ [mm] =   | 60   | 60            | 70   | 75   | 80   | 90                                | 100  | 112  | 128  |
| Enective embedment depth                          | $h_{ef,max}$ [mm] =   | 160  | 200           | 240  | 280  | 320  | 400                               | 500  | 580  | 640  |
| Diameter of steel brush                           | d <sub>b</sub> [mm] ≥ | 14   | 16            | 18   | 20   | 22   | 26                                | 34   | 37   | 41,5 |
| Minimum thickness of member                       | h <sub>min</sub> [mm] |      | 30 mm<br>0 mm |      |      |      | h <sub>ef</sub> + 2d <sub>0</sub> | )    |      |      |
| Minimum spacing                                   | s <sub>min</sub> [mm] | 40   | 50            | 60   | 70   | 80   | 100                               | 125  | 140  | 160  |
| Minimum edge distance                             | c <sub>min</sub> [mm] | 40   | 50            | 60   | 70   | 80   | 100                               | 125  | 140  | 160  |

## Table B3: Installation parameters for internal threaded anchor rod

| Size internal threaded anchor rod         |                            | IG-M6 | IG-M8      | IG-M10 | IG-M12            | IG-M16            | IG-M20 |
|-------------------------------------------|----------------------------|-------|------------|--------|-------------------|-------------------|--------|
| Internal diameter of anchor               | d <sub>2</sub> [mm] =      | 6     | 8          | 10     | 12                | 16                | 20     |
| Outer diameter of anchor 1)               | d <sub>nom</sub> [mm] =    | 10    | 12         | 16     | 20                | 24                | 30     |
| Nominal drill hole diameter               | d <sub>0</sub> [mm] =      | 12    | 14         | 18     | 22                | 28                | 35     |
| Effective embedment depth                 | h <sub>ef,min</sub> [mm] = | 60    | 70         | 80     | 90                | 96                | 120    |
| Effective embedment depth                 | h <sub>ef,max</sub> [mm] = | 200   | 240        | 320    | 400               | 480               | 600    |
| Diameter of clearance hole in the fixture | d <sub>f</sub> [mm] =      | 7     | 9          | 12     | 14                | 18                | 22     |
| Maximum torque moment                     | T <sub>inst</sub> [Nm] ≤   | 10    | 10         | 20     | 40                | 60                | 100    |
| Thread engagement length min/max          | I <sub>IG</sub> [mm] =     | 8/20  | 8/20       | 10/25  | 12/30             | 16/32             | 20/40  |
| Minimum thickness of member               | h <sub>min</sub> [mm]      |       | 0 mm<br>mm |        | h <sub>ef</sub> + | - 2d <sub>0</sub> |        |
| Minimum spacing                           | s <sub>min</sub> [mm]      | 50    | 60         | 80     | 100               | 120               | 150    |
| Minimum edge distance                     | c <sub>min</sub> [mm]      | 50    | 60         | 80     | 100               | 120               | 150    |

<sup>1)</sup> With metric threads according to EN 1993-1-8:2005+AC:2009

| Spitec Oy Injection system Lionfix, Lionfix N for concrete |           |
|------------------------------------------------------------|-----------|
| Intended Use Installation parameters                       | Annex B 2 |



| Table B4:       | Table B4: Parameter cleaning and setting tools |                                    |                                    |                         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                   |                          |      |
|-----------------|------------------------------------------------|------------------------------------|------------------------------------|-------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------|--------------------------|------|
|                 | TATES VIETNESS SONNERS                         |                                    | 8                                  | -                       | 993333333 | A STATE OF THE PARTY OF THE PAR |                | 6                 |                          |      |
| Threaded<br>Rod | Rebar                                          | Internal<br>threaded<br>Anchor rod | d₀<br>Drill bit - Ø<br>HD, HDB, CA | d <sub>t</sub><br>Brush |           | d <sub>b,min</sub><br>min.<br>Brush - Ø                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Piston<br>plug | Installatio<br>of | n directio<br>piston plu |      |
| [mm]            | [mm]                                           | [mm]                               | [mm]                               |                         | [mm]      | [mm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | 1                 | $\rightarrow$            | 1    |
| M8              |                                                |                                    | 10                                 | RBT10                   | 12        | 10,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |                   |                          |      |
| M10             | 8                                              | IG-M6                              | 12                                 | RBT12                   | 14        | 12,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | No piston p       | dua roquire              | \d   |
| M12             | 10                                             | IG-M8                              | 14                                 | RBT14                   | 16        | 14,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | ino pistori p     | nug require              | au . |
|                 | 12                                             |                                    | 16                                 | RBT16                   | 18        | 16,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |                   |                          |      |
| M16             | 14                                             | IG-M10                             | 18                                 | RBT18                   | 20        | 18,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VS18           |                   |                          |      |
|                 | 16                                             |                                    | 20                                 | RBT20                   |           | 20,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VS20           |                   |                          |      |
| M20             | 20                                             | IG-M12                             | 24                                 | RBT24                   |           | 24,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VS24           | h <sub>ef</sub> > | h <sub>ef</sub> >        |      |
| M24             |                                                | IG-M16                             | 28                                 | RBT28                   |           | 28,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VS28           | 250 mm            | 250 mm                   | all  |
| M27             | 25                                             |                                    | 32                                 | RBT32                   | 34        | 32,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VS32           | 230 11111         | 230 111111               |      |
| M30             | 28                                             | IG-M20                             | 35                                 | RBT35                   | 37        | 35,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VS35           | _                 |                          |      |
|                 | 32                                             |                                    | 40                                 | RBT40                   | 41,5      | 40,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VS40           |                   |                          |      |



MAC - Hand pump (volume 750 ml)

Drill bit diameter (d<sub>0</sub>): 10 mm to 20 mm

Drill hole depth (h<sub>0</sub>): < 10 d<sub>nom</sub>

Only in non-cracked concrete



CAC - Rec. compressed air tool (min 6 bar)
Drill bit diameter (d<sub>0</sub>): all diameters



Piston plug for overhead or horizontal installation VS

Drill bit diameter (d<sub>0</sub>): 18 mm to 40 mm



Steel brush RBT

Drill bit diameter (d<sub>0</sub>): all diameters

| Spitec Oy Injection system Lionfix, Lionfix N for concrete |           |
|------------------------------------------------------------|-----------|
| Intended Use                                               | Annex B 3 |
| Cleaning and setting tools                                 |           |
|                                                            |           |



#### Installation instructions

#### Drilling of the bore hole



Drill with hammer drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1, B2, or B3), with hammer (HD), hollow (HDB) or compressed air (CD) drilling. The use of a hollow drill bit is only in combination with a sufficient vacuum permitted.

In case of aborted drill hole: The drill hole shall be filled with mortar

Attention! Standing water in the bore hole must be removed before cleaning.

## MAC: Cleaning for bore hole diameter d<sub>0</sub> ≤ 20mm and bore hole depth h<sub>0</sub> ≤ 10d<sub>nom</sub> (uncracked concrete only!)



Starting from the bottom or back of the bore hole, blow the hole clean by a hand pump <sup>1)</sup> (Annex B 3) a minimum of four times.



Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush > d<sub>b.min</sub> (Table B4) a minimum of four times in a twisting motion.
If the bore hole ground is not reached with the brush, a brush extension must be used.



Einally blow the hole clean again with a hand pump (Annex B 3) a minimum of four times.

## CAC: Cleaning for all bore hole diameter in uncracked and cracked concrete



Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) (Annex B 3) a minimum of four times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension must be used.



Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush > d<sub>b,min</sub> (Table B4) a minimum of four times in a twisting motion.

If the bore hole ground is not reached with the brush, a brush extension must be used.

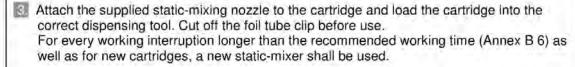


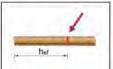
Finally blow the hole clean again with compressed air (min. 6 bar) (Annex B 3) a minimum of four times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension must be used.

After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

Spitec Oy Injection system Lionfix, Lionfix N for concrete

Intended Use
Installation instructions


Annex B 4


<sup>&</sup>lt;sup>1)</sup> It is permitted to blow bore holes with diameter between 14 mm and 20 mm and an embedment depth up to 10d<sub>nom</sub> also in cracked concrete with hand-pump.



#### Installation instructions (continuation)







Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rods.



Frior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey colour. For foil tube cartridges it must be discarded a minimum of six full strokes.



Starting from the bottom or back of the cleaned anchor hole, fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. If the bottom or back of the anchor hole is not reached, an appropriate extension nozzle must be used. Observe the gel-/ working times given in Annex B 6.



Piston plugs and mixer nozzle extensions shall be used according to Table B4 for the following applications:

- Horizontal assembly (horizontal direction) and ground erection (vertical downwards direction): Drill bit-Ø d₀ ≥ 18 mm and embedment depth h<sub>ef</sub> > 250mm
- Overhead assembly (vertical upwards direction): Drill bit-Ø d<sub>0</sub> ≥ 18 mm



Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached.

The anchor shall be free of dirt, grease, oil or other foreign material.



Be sure that the anchor is fully seated at the bottom of the hole and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For overhead application the anchor rod shall be fixed (e.g. wedges).



Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Annex B 6).



After full curing, the add-on part can be installed with up to the max. torque (Table B1 or B3) by using a calibrated torque wrench. It can be optional filled the annular gap between anchor and fixture with mortar. Therefor substitute the washer by the filling washer and connect the mixer reduction nozzle to the tip of the mixer. The annular gap is filled with mortar, when mortar oozes out of the washer.

| Spitec Oy Injection system Lionfix, Lionfix N for concrete |           |
|------------------------------------------------------------|-----------|
| Intended Use Installation instructions (continuation)      | Annex B 5 |



| Table B5:            |        | laximum worki<br>ionfix | ing time and minimum curing time |                                        |
|----------------------|--------|-------------------------|----------------------------------|----------------------------------------|
| Concrete temperature |        | perature                | Gelling- / working time          | Minimum curing time in dry concrete 1) |
| -10 °C               | to     | -6°C                    | 90 min <sup>2)</sup>             | 24 h <sup>2)</sup>                     |
| -5 °C                | to     | -1°C                    | 90 min                           | 14 h                                   |
| 0 °C                 | to     | +4°C                    | 45 min                           | 7 h                                    |
| +5 °C                | to     | +9°C                    | 25 min                           | 2 h                                    |
| + 10 °C              | to     | +19°C                   | 15 min                           | 80 min                                 |
| + 20 °C              | to     | +29°C                   | 6 min                            | 45 min                                 |
| + 30 °C              | to     | +34°C                   | 4 min                            | 25 min                                 |
| + 35 °C              | to     | +39°C                   | 2 min                            | 20 min                                 |
|                      | + 40 ° | С                       | 1,5 min                          | 15 min                                 |
| Cartrido             | ge tem | perature                | +5°C to                          | +40°C                                  |

<sup>1)</sup> In wet concrete the curing time must be doubled.

Table B6: Maximum working time and minimum curing time Lionfix N

| Concre   | Concrete temperature |          | Gelling- / working time | Minimum curing time<br>in dry concrete <sup>1)</sup> |  |  |  |  |
|----------|----------------------|----------|-------------------------|------------------------------------------------------|--|--|--|--|
| -20 °C   | to                   | -16°C    | 75 min                  | 24 h                                                 |  |  |  |  |
| -15 °C   | to                   | -11°C    | 55 min                  | 16 h                                                 |  |  |  |  |
| -10 °C   | to                   | -6°C     | 35 min                  | 10 h                                                 |  |  |  |  |
| -5 °C    | to                   | -1°C     | 20 min                  | 5 h                                                  |  |  |  |  |
| 0 °C     | to                   | +4°C     | 10 min                  | 2,5 h                                                |  |  |  |  |
| +5 °C    | to                   | +9°C     | 6 min                   | 80 Min                                               |  |  |  |  |
| +        | 10 °C                |          | 6 min                   | 60 Min                                               |  |  |  |  |
| Cartrido | ge tem               | perature | -20°C to                | +10°C                                                |  |  |  |  |

<sup>1)</sup> In wet concrete the curing time must be doubled.

| Spitec Oy Injection system Lionfix, Lionfix N for concrete |           |
|------------------------------------------------------------|-----------|
| Intended Use Curing time                                   | Annex B 6 |

<sup>&</sup>lt;sup>2)</sup> Cartridge temperature must be at min. +15°C.



| Si                                                             | ze                                              |                                |       | М8      | M10     | M12  | M16 | M20 | M24 | M27  | M30  |
|----------------------------------------------------------------|-------------------------------------------------|--------------------------------|-------|---------|---------|------|-----|-----|-----|------|------|
| Cr                                                             | ross section area                               | A <sub>s</sub>                 | [mm²] | 36,6    | 58      | 84,3 | 157 | 245 | 353 | 459  | 561  |
| CI                                                             | naracteristic tension resistance, Steel failure | e <sup>1)</sup>                |       |         |         |      |     |     |     |      |      |
| St                                                             | eel, Property class 4.6 and 4.8                 | N <sub>Rk,s</sub>              | [kN]  | 15 (13) | 23 (21) | 34   | 63  | 98  | 141 | 184  | 224  |
| St                                                             | eel, Property class 5.6 and 5.8                 | N <sub>Rk,s</sub>              | [kN]  | 18 (17) | 29 (27) | 42   | 78  | 122 | 176 | 230  | 280  |
| St                                                             | eel, Property class 8.8                         | N <sub>Rk,s</sub>              | [kN]  | 29 (27) | 46 (43) | 67   | 125 | 196 | 282 | 368  | 449  |
| St                                                             | ainless steel A2, A4 and HCR, class 50          | N <sub>Rk,s</sub>              | [kN]  | 18      | 29      | 42   | 79  | 123 | 177 | 230  | 281  |
| St                                                             | ainless steel A2, A4 and HCR, class 70          | N <sub>Rk,s</sub>              | [kN]  | 26      | 41      | 59   | 110 | 171 | 247 | -    | -    |
| St                                                             | ainless steel A4 and HCR, class 80              | N <sub>Rk,s</sub>              | [kN]  | 29      | 46      | 67   | 126 | 196 | 282 | -    | -    |
| CI                                                             | haracteristic tension resistance, Partial facto | or <sup>2)</sup>               |       |         |         |      |     |     |     |      |      |
| St                                                             | eel, Property class 4.6 and 5.6                 | γMs,N                          | [-]   |         |         |      | 2,0 | )   |     |      |      |
| St                                                             | eel, Property class 4.8, 5.8 and 8.8            | Y <sub>Ms,N</sub>              | [-]   |         |         |      | 1,5 | 5   |     |      |      |
| St                                                             | ainless steel A2, A4 and HCR, class 50          | Y <sub>Ms,N</sub>              | [-]   |         |         |      | 2,8 | 6   |     |      |      |
| St                                                             | ainless steel A2, A4 and HCR, class 70          | Y <sub>Ms,N</sub>              | [-]   | 1,87    |         |      |     |     |     |      |      |
| Stainless steel A4 and HCR, class 80 Y <sub>Ms,N</sub> [-] 1,6 |                                                 |                                |       |         |         |      |     |     |     |      |      |
| CI                                                             | haracteristic shear resistance, Steel failure   | 1)                             |       |         |         |      |     |     |     | Г    |      |
| Ε                                                              | Steel, Property class 4.6 and 4.8               | V <sup>0</sup> <sub>Rk,s</sub> | [kN]  | 9 (8)   | 14 (13) | 20   | 38  | 59  | 85  | 110  | 135  |
| rarm                                                           | Steel, Property class 5.6 and 5.8               | $V^{U}_{Rk,s}$                 | [kN]  | 11 (10) | 17 (16) | 25   | 47  | 74  | 106 | 138  | 168  |
| eve                                                            | Steel, Property class 8.8                       | V <sup>0</sup> <sub>Rk,s</sub> | [kN]  | 15 (13) | 23 (21) | 34   | 63  | 98  | 141 | 184  | 224  |
| ij                                                             | Stainless steel A2, A4 and HCR, class 50        | $V_{\rm Rk,s}$                 | [kN]  | 9       | 15      | 21   | 39  | 61  | 88  | 115  | 140  |
| Without lever                                                  | Stainless steel A2, A4 and HCR, class 70        | V <sup>0</sup> Bk.s            | [kN]  | 13      | 20      | 30   | 55  | 86  | 124 | -    | -    |
| >                                                              | Stainless steel A4 and HCR, class 80            | $V^{U}_{Rk,s}$                 | [kN]  | 15      | 23      | 34   | 63  | 98  | 141 | -    | -    |
|                                                                | Steel, Property class 4.6 and 4.8               | M <sup>0</sup> Rk,s            | [Nm]  | 15 (13) | 30 (27) | 52   | 133 | 260 | 449 | 666  | 900  |
| arm                                                            | Steel, Property class 5.6 and 5.8               | M <sup>0</sup> <sub>Rk,s</sub> | [Nm]  | 19 (16) | 37 (33) | 65   | 166 | 324 | 560 | 833  | 1123 |
|                                                                | Steel, Property class 8.8                       | M <sup>0</sup> Rk,s            | [Nm]  | 30 (26) | 60 (53) | 105  | 266 | 519 | 896 | 1333 | 1797 |
| With lever                                                     | Stainless steel A2, A4 and HCR, class 50        | M <sup>0</sup> Rk,s            | [Nm]  | 19      | 37      | 66   | 167 | 325 | 561 | 832  | 1125 |
| ₹                                                              | Stainless steel A2, A4 and HCR, class 70        | M <sup>0</sup> Rk,s            | [Nm]  | 26      | 52      | 92   | 232 | 454 | 784 | -    | -    |
|                                                                | Stainless steel A4 and HCR, class 80            | M <sup>0</sup> Rk,s            | [Nm]  | 30      | 59      | 105  | 266 | 519 | 896 | -    | -    |
| CI                                                             | haracteristic shear resistance, Partial factor  | 2)                             |       | •       |         |      |     |     |     |      |      |
| St                                                             | eel, Property class 4.6 and 5.6                 | γ <sub>Ms,V</sub>              | [-]   | 1,67    |         |      |     |     |     |      |      |
| St                                                             | eel, Property class 4.8, 5.8 and 8.8            | Y <sub>Ms,V</sub>              | [-]   |         |         |      | 1,2 | 5   |     |      |      |
| St                                                             | ainless steel A2, A4 and HCR, class 50          | Y <sub>Ms,V</sub>              | [-]   | 2,38    |         |      |     |     |     |      |      |
| St                                                             | ainless steel A2, A4 and HCR, class 70          | Y <sub>Ms,V</sub>              | [-]   |         |         |      | 1,5 | 6   |     |      |      |
| 0.4                                                            | ainless steel A4 and HCR, class 80              | Y <sub>Ms,V</sub>              | [-]   |         |         |      | 1,3 | 3   |     |      |      |

<sup>&</sup>lt;sup>1)</sup> Values are only valid for the given stress area A<sub>s</sub>. Values in brackets are valid for undersized threaded rods with smaller stress area A<sub>s</sub> for hot-dip galvanised threaded rods according to EN ISO 10684:2004+AC:2009.

<sup>2)</sup> in absence of national regulation

| Spitec Oy Injection system Lionfix, Lionfix N for concrete                                                  |           |
|-------------------------------------------------------------------------------------------------------------|-----------|
| Performances Characteristic values for steel tension resistance and steel shear resistance of threaded rods | Annex C 1 |



| Table C2:                    | Characteristic values   | for Concrete       | cone failure | and Splitting with all kind of action                  |
|------------------------------|-------------------------|--------------------|--------------|--------------------------------------------------------|
| Anahayaina                   |                         |                    |              | All Anchor tymog and since                             |
| Anchor size Concrete cone fa | ailure                  |                    |              | All Anchor types and sizes                             |
| Non-cracked con              |                         | k <sub>ucr,N</sub> | [-]          | 11,0                                                   |
| Cracked concrete             |                         | k <sub>cr,N</sub>  | [-]          | 7,7                                                    |
| Edge distance                |                         | c <sub>cr,N</sub>  | [mm]         | 1,5 h <sub>ef</sub>                                    |
| Axial distance               |                         | s <sub>cr,N</sub>  | [mm]         | 2 c <sub>cr,N</sub>                                    |
| Splitting                    |                         | <u>.</u>           |              |                                                        |
|                              | h/h <sub>ef</sub> ≥ 2,0 |                    |              | 1,0 h <sub>ef</sub>                                    |
| Edge distance                | $2.0 > h/h_{ef} > 1.3$  | C <sub>cr,sp</sub> | [mm]         | $2 \cdot h_{ef} \left( 2.5 - \frac{h}{h_{ef}} \right)$ |
|                              | h/h <sub>ef</sub> ≤ 1,3 |                    |              | 2,4 h <sub>ef</sub>                                    |
| Axial distance               | •                       | s <sub>cr,sp</sub> | [mm]         | 2 c <sub>cr,sp</sub>                                   |

| Spitec Oy Injection system Lionfix, Lionfix N for concrete                                         |           |
|----------------------------------------------------------------------------------------------------|-----------|
| Performances Characteristic values for Concrete cone failure and Splitting with all kind of action | Annex C 2 |



| Table                                                    | C3:                                                        | Characte            | ristic values of                      | tension load        | s under st           | atic an    | nd qua                                             | si-stat    | ic acti    | on             |          |        |            |  |
|----------------------------------------------------------|------------------------------------------------------------|---------------------|---------------------------------------|---------------------|----------------------|------------|----------------------------------------------------|------------|------------|----------------|----------|--------|------------|--|
|                                                          |                                                            | readed ro           | d                                     |                     |                      | M8         | M10                                                | M12        | M16        | M20            | M24      | M27    | M30        |  |
| Steel fa                                                 |                                                            |                     |                                       |                     | T                    |            |                                                    | Α          |            |                | 1 04)    |        |            |  |
| Characteristic tension resistance N <sub>Rk,s</sub> [kN] |                                                            |                     |                                       |                     |                      |            | A <sub>s</sub> • f <sub>uk</sub> (or see Table C1) |            |            |                |          |        |            |  |
| Partial                                                  |                                                            |                     |                                       | γ <sub>Ms,N</sub>   | [-]                  |            |                                                    |            | see Ta     | ble C1         |          |        |            |  |
|                                                          |                                                            |                     | concrete failure<br>ance in non-crack | red concrete C      | 20/25                |            |                                                    |            |            |                |          |        |            |  |
| Onarac                                                   |                                                            | °C/24°C             |                                       |                     | 20/23                | 10         | 12                                                 | 12         | 12         | 12             | 11       | 10     | 9          |  |
| ge 2                                                     |                                                            |                     | Dry, wet concrete                     |                     |                      |            |                                                    |            |            |                |          |        |            |  |
| Temperature range                                        |                                                            | °C/50°C             |                                       |                     |                      | 7,5        | 9                                                  | 9          | 9          | 9              | 8,5      | 7,5    | 6,5        |  |
| rature                                                   |                                                            | 0°C/72°C<br>°C/24°C |                                       | τ <sub>Rk,ucr</sub> | [N/mm²]              | 5,5        | 6,5<br>8,5                                         | 6,5<br>8,5 | 6,5<br>8,5 | 6,5            | 6,5      | 5,5    | 5,0        |  |
| ımpeı                                                    |                                                            | °C/50°C             | flooded bore                          |                     |                      | 7,5<br>5,5 | 6,5                                                | 6,5        | 6,5        | N              | lo Perfo | ormano | e          |  |
| <u>⊕</u>                                                 |                                                            | 0°C/72°C            | hole                                  |                     |                      | 4,0        | 5,0                                                | 5,0        | 5,0        | A              | ssesse   | d (NPA | <b>A</b> ) |  |
| Charas                                                   |                                                            |                     |                                       | anavata C20/0       | <br>F                | 4,0        | 3,0                                                | 3,0        | 3,0        |                |          |        |            |  |
| Charac                                                   |                                                            |                     | ance in cracked o                     | Concrete G20/2      | 5                    | 4.0        | - n                                                |            |            |                |          | ٥. ٦   | 0.5        |  |
| e G                                                      |                                                            | °C/24°C             | Dry, wet                              |                     |                      | 4,0        | 5,0                                                | 5,5        | 5,5        | 5,5            | 5,5      | 6,5    | 6,5        |  |
| Temperature range                                        |                                                            | °C/50°C             | concrete                              |                     |                      | 2,5        | 3,5                                                | 4,0        | 4,0        | 4,0            | 4,0      | 4,5    | 4,5        |  |
| ature                                                    |                                                            | 0°C/72°C            |                                       | τ <sub>Rk,cr</sub>  | [N/mm <sup>2</sup> ] | 2,0        | 2,5                                                | 3,0        | 3,0        | 3,0            | 3,0      | 3,5    | 3,5        |  |
| mper                                                     | -                                                          | °C/24°C             | flooded bore                          |                     |                      | 4,0        | 4,0                                                | 5,5        | 5,5        | No Performano  |          |        | e          |  |
|                                                          |                                                            | °C/50°C             | hole                                  |                     |                      | 2,5        | 3,0                                                | 4,0        | 4,0        | Assessed (NPA) |          |        |            |  |
| Rodukt                                                   |                                                            | 0°C/72°C            | cracked and nor                       | n cracked conc      | roto C20/25          | 2,0        | 2,5                                                | 3,0        | 3,0        |                |          |        |            |  |
|                                                          |                                                            |                     | Cracked and nor                       | I-Cracked Corici    |                      |            |                                                    |            |            |                |          |        |            |  |
| Temperature<br>range                                     |                                                            | °C/24°C             | Dry, wet concrete and                 |                     |                      |            | 0,73                                               |            |            |                |          |        |            |  |
| mperat                                                   | II: 80°                                                    | °C/50°C             | flooded bore                          | $\Psi^0_{sus}$      | [-]                  | 0,65       |                                                    |            |            |                |          |        |            |  |
| _ ie                                                     | III: 12                                                    | 0°C/72°C            | hole                                  |                     |                      | 0,57       |                                                    |            |            |                |          |        |            |  |
|                                                          |                                                            |                     |                                       | C25/30              |                      |            |                                                    |            |            | ,02            |          |        |            |  |
| Incres                                                   | sina facto                                                 | ors for cond        | crete                                 | C30/37<br>C35/45    | 1,04                 |            |                                                    |            |            |                |          |        |            |  |
| Ψ <sub>c</sub>                                           | sing racio                                                 | 313 101 00110       | Sicio                                 | C40/50              |                      | 1,07       |                                                    |            |            |                |          |        |            |  |
|                                                          |                                                            |                     |                                       | C45/55              |                      | 1,09       |                                                    |            |            |                |          |        |            |  |
|                                                          |                                                            |                     |                                       | C50/60              |                      | 1,10       |                                                    |            |            |                |          |        |            |  |
|                                                          | ete cone                                                   |                     |                                       |                     |                      |            |                                                    |            | T          | ble OO         |          |        |            |  |
| Splittir                                                 | ant param<br>na                                            | ietel               |                                       |                     |                      |            |                                                    |            | see 18     | ble C2         |          |        |            |  |
| Releva                                                   | ant param                                                  |                     |                                       |                     |                      |            |                                                    |            | see Ta     | ıble C2        |          |        |            |  |
|                                                          | ation fac                                                  |                     |                                       |                     |                      | 1.0        |                                                    |            |            | 1.0            |          |        |            |  |
|                                                          | and wet                                                    | concrete<br>e hole  |                                       | $\gamma_{inst}$     | [-]                  | 1,0        | 1                                                  | ,4         |            | 1,2<br>NPA     |          |        |            |  |
| 101 1100                                                 |                                                            | 3 11010             |                                       | 1                   | 1                    |            | ·                                                  | , .        |            |                |          | · ·    |            |  |
|                                                          | Spitec Oy Injection system Lionfix, Lionfix N for concrete |                     |                                       |                     |                      |            |                                                    | Anne       | x C 3      |                |          |        |            |  |
|                                                          | r <b>mances</b><br>cteristic v                             | alues of ter        | nsion loads under                     | static and quas     | i-static actio       | n          |                                                    |            |            |                |          |        |            |  |

## Page 19 of European Technical Assessment ETA-19/0849 of 28 January 2020

English translation prepared by DIBt



| Table C4: Characteristic value                                                                                 |                                |       |                                                                    |     | <del>-</del> |                                   | 1       |         |      |      |
|----------------------------------------------------------------------------------------------------------------|--------------------------------|-------|--------------------------------------------------------------------|-----|--------------|-----------------------------------|---------|---------|------|------|
| Anchor size threaded rod                                                                                       | M8                             | M10   | M12                                                                | M16 | M20          | M24                               | M27     | M30     |      |      |
| Steel failure without lever arm                                                                                |                                |       |                                                                    |     |              |                                   |         |         |      |      |
| Characteristic shear resistance<br>Steel, strength class 4.6, 4.8, 5.6 and 5.8                                 | V <sup>0</sup> Rk,s            | [kN]  | 0,6 ⋅ A <sub>s</sub> ⋅ f <sub>uk</sub> (or see Table C1)           |     |              |                                   |         |         |      |      |
| Characteristic shear resistance<br>Steel, strength class 8.8<br>Stainless Steel A2, A4 and HCR, all<br>classes | V <sup>0</sup> <sub>Rk,s</sub> | [kN]  | 0,5 ⋅ A <sub>s</sub> ⋅ f <sub>uk</sub> (or see Table C1)           |     |              |                                   |         |         |      |      |
| Partial factor                                                                                                 | γ <sub>Ms,V</sub>              | [-]   |                                                                    |     |              | see                               | Table C | ;1      |      |      |
| Ductility factor                                                                                               | [-]                            | 1,0   |                                                                    |     |              |                                   |         |         |      |      |
| Steel failure with lever arm                                                                                   | •                              |       |                                                                    |     |              |                                   |         |         |      |      |
| Characteristic bending moment                                                                                  | M <sup>0</sup> Rk,s            | [Nm]  |                                                                    |     | 1,2 •        | W <sub>el</sub> • f <sub>ul</sub> | (or see | Table C | C1)  |      |
| Elastic section modulus                                                                                        | W <sub>el</sub>                | [mm³] | 31                                                                 | 62  | 109          | 277                               | 541     | 935     | 1387 | 1874 |
| Partial factor                                                                                                 | $\gamma_{Ms,V}$                | [-]   |                                                                    |     |              | see                               | Table C | :1      |      |      |
| Concrete pry-out failure                                                                                       | •                              |       |                                                                    |     |              |                                   |         |         |      |      |
| Factor                                                                                                         | k <sub>8</sub>                 | [-]   |                                                                    |     |              |                                   | 2,0     |         |      |      |
| Installation factor                                                                                            | γ <sub>inst</sub>              | [-]   | 1,0                                                                |     |              |                                   |         |         |      |      |
| Concrete edge failure                                                                                          |                                |       |                                                                    |     |              |                                   |         |         |      |      |
| Effective length of fastener                                                                                   | If                             | [mm]  | $\min(h_{ef}; 12 \cdot d_{nom}) \qquad \qquad \min(h_{ef}; 300mm)$ |     |              |                                   |         |         |      |      |
| Outside diameter of fastener                                                                                   | d <sub>nom</sub>               | [mm]  | 8                                                                  | 10  | 12           | 16                                | 20      | 24      | 27   | 30   |
| Installation factor                                                                                            | γ <sub>inst</sub>              | [-]   |                                                                    |     |              |                                   | 1,0     |         |      |      |

| Spitec Oy Injection system Lionfix, Lionfix N for concrete                             |           |
|----------------------------------------------------------------------------------------|-----------|
| Performances Characteristic values of shear loads under static and quasi-static action | Annex C 4 |



| Anchor size internal threaded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | anchor rods               |                      |                      | IG-M6 | IG-M8 | IG-M10      | IG-M12         | IG-M16           | IG-M20  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------|----------------------|-------|-------|-------------|----------------|------------------|---------|
| Steel failure <sup>1)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |                      |                      |       |       |             |                |                  |         |
| Characteristic tension resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e, 5.8                    | N <sub>Rk,s</sub>    | [kN]                 | 10    | 17    | 29          | 42             | 76               | 123     |
| Steel, strength class                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.8                       | N <sub>Rk,s</sub>    | [kN]                 | 16    | 27    | 46          | 67             | 121              | 196     |
| Partial factor, strength class 5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | and 8.8                   | γ <sub>Ms,N</sub>    | [-]                  |       |       | 1           | ,5             |                  |         |
| Characteristic tension resistance Steel A4 and HCR, Strength cla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           | N <sub>Rk,s</sub>    | [kN]                 | 14    | 26    | 41          | 59             | 110              | 124     |
| Partial factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           | γ <sub>Ms,N</sub>    | [-]                  |       |       | 1,87        |                |                  | 2,86    |
| Combined pull-out and concre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |                      |                      |       |       |             |                |                  |         |
| Characteristic bond resistance i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n non-cracked             | concret              | e C20/25             |       |       |             |                |                  |         |
| l: 40°C/24°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dry wet                   |                      |                      | 12    | 12    | 12          | 12             | 11               | 9       |
| II: 80°C/50°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dry, wet                  |                      |                      | 9     | 9     | 9           | 9              | 8,5              | 6,5     |
| and a superartical distribution of the superartical distribution o | concrete                  | ] <sub></sub>        | [N]/mm21             | 6,5   | 6,5   | 6,5         | 6,5            | 6,5              | 5,0     |
| e E I: 40°C/24°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>6</b> 1 1 11           | <sup>τ</sup> Rk,ucr  | [N/mm²]              | 8,5   | 8,5   | 8,5         | N D (          |                  |         |
| .a II: 80°C/50°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | flooded bore              |                      |                      | 6,5   | 6,5   | 6,5         | No Perfe       | No Performance A |         |
| III: 120°C/72°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | hole                      |                      | •                    | 5,0   | 5,0   | 5,0         | (NPA)          |                  |         |
| Characteristic bond resistance i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n cracked con             | crete C2             | 20/25                | 0,0   | 0,0   | 1 0,0       |                |                  |         |
| I: 40°C/24°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |                      |                      | 5,0   | 5,5   | 5,5         | 5,5            | 5,5              | 6,5     |
| ⊎ II: 80°C/50°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dry, wet                  |                      |                      | 3,5   | 4,0   | 4,0         | 4,0            | 4,0              | 4,5     |
| ## 8   III: 120°C/72°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | concrete                  |                      | •                    | 2,5   | 3,0   | 3,0         | 3,0            | 3,0              | 3,5     |
| But II: 80°C/50°C II: 40°C/24°C II: 80°C/50°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           | — <sup>τ</sup> Rk,cr | [N/mm <sup>2</sup> ] | 4,0   | 5,5   | 5,5         | 0,0            | 0,0              | 0,5     |
| □ II: 80°C/50°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | flooded bore              |                      | -                    | 3,0   | 4,0   | 4,0         | No Perfe       | ormance A        | ssessec |
| III: 120°C/72°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | hole                      |                      | -                    | 2,5   | 3,0   | 3,0         |                | (NPA)            |         |
| Reduktion factor $\psi^0_{SUS}$ in crack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | red and non-cr            | acked c              | oncrete C            |       | 0,0   | 1 0,0       |                |                  |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                      |                      | 20/20 |       |             |                |                  |         |
| 1: 40°C/24°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dry, wet                  |                      |                      | 0,73  |       |             |                |                  |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | concrete and flooded bore | $\psi^0_{sus}$       | [-]                  | 0,65  |       |             |                |                  |         |
| ည် III: 120°C/72°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | hole                      |                      |                      |       |       |             | 57             |                  |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                      | 5/30                 |       |       |             | 02             |                  |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                      | 0/37                 |       |       |             | 04             |                  |         |
| Increasing factors for concrete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                      | 5/45                 | 1,07  |       |             |                |                  |         |
| $\Psi_{C}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |                      | 0/50                 |       |       |             | 08             |                  |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                      | 5/55                 |       |       |             | 09             |                  |         |
| Concrete cone failure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           | C5                   | 0/60                 |       |       | 1,          | 10             |                  |         |
| Relevant parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |                      |                      |       |       | coo To      | able C2        |                  |         |
| Splitting failure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |                      |                      |       |       | 300 T       | ADIC OZ        |                  |         |
| Relevant parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |                      | I                    |       |       | 200 T       | able C2        |                  |         |
| Installation factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                      |                      |       |       | 300 10      | ADIC OL        |                  |         |
| for dry and wet concrete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |                      |                      |       |       | 1           | ,2             |                  |         |
| for flooded bore hole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           | γ <sub>inst</sub>    | [-]                  |       | 1,4   | I           | , <u>~</u><br> | NPA              |         |
| ioi nooded bole nole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           | L                    |                      |       |       | nerty class |                | INEW             |         |

<sup>&</sup>lt;sup>1)</sup> Fastenings (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element.
<sup>2)</sup> For IG-M20 strength class 50 is valid

| Spitec Oy Injection system Lionfix, Lionfix N for concrete                               |           |
|------------------------------------------------------------------------------------------|-----------|
| Performances Characteristic values of tension loads under static and quasi-static action | Annex C 5 |



| Table C6: Characteristic                                                                           |                  |                                |      | IG-M6   | IG-M8   | IG-M10  | IG-M12  | IG-M16  | IG-M20                          |
|----------------------------------------------------------------------------------------------------|------------------|--------------------------------|------|---------|---------|---------|---------|---------|---------------------------------|
| Steel failure without lever arm <sup>1</sup>                                                       |                  | oi ious                        |      | IG-IVIO | IG-IVIO | IG-WITO | IG-WI12 | IG-WITO | IG-IVI20                        |
| Characteristic shear resistance,                                                                   | 5.8              | V <sup>0</sup> <sub>Rk,s</sub> | [kN] | 5       | 9       | 15      | 21      | 38      | 61                              |
| Steel, strength class                                                                              | 8.8              | V <sup>0</sup> Rk,s            | [kN] | 8       | 14      | 23      | 34      | 60      | 98                              |
| Partial factor, strength class 5.8 a                                                               | and 8.8          | γ <sub>Ms,V</sub>              | [-]  |         | 1       | l       | 1,25    | 1       |                                 |
| Characteristic shear resistance,<br>Stainless Steel A4 and HCR,<br>Strength class 70 <sup>2)</sup> |                  | V <sup>0</sup> Rk,s            | [kN] | 7       | 13      | 20      | 30      | 55      | 40                              |
| Partial factor                                                                                     |                  | γ <sub>Ms,V</sub>              | [-]  |         |         | 1,56    |         |         | 2,38                            |
| Ductility factor                                                                                   |                  | k <sub>7</sub>                 | [-]  |         |         |         | 1,0     |         |                                 |
| Steel failure with lever arm <sup>1)</sup>                                                         |                  |                                |      |         |         |         |         |         |                                 |
| Characteristic bending moment,<br>Steel, strength class                                            | 5.8              | M <sup>0</sup> Rk,s            | [Nm] | 8       | 19      | 37      | 66      | 167     | 325                             |
|                                                                                                    | 8.8              | M <sup>0</sup> Rk,s            | [Nm] | 12      | 30      | 60      | 105     | 267     | 519                             |
| Partial factor, strength class 5.8 a                                                               | and 8.8          | γ <sub>Ms,V</sub>              | [-]  |         |         |         |         |         |                                 |
| Characteristic bending moment,<br>Stainless Steel A4 and HCR,<br>Strength class 70 <sup>2)</sup>   |                  | M <sup>0</sup> Rk,s            | [Nm] | 11      | 26      | 52      | 92      | 233     | 456                             |
| Partial factor                                                                                     |                  | γ <sub>Ms,V</sub>              | [-]  |         |         | 1,56    |         |         | 2,38                            |
| Concrete pry-out failure                                                                           |                  |                                |      |         |         |         |         |         |                                 |
| Factor                                                                                             |                  | k <sub>8</sub>                 | [-]  |         |         |         | 2,0     |         |                                 |
| Installation factor                                                                                |                  | γ <sub>inst</sub>              | [-]  |         |         |         | 1,0     |         |                                 |
| Concrete edge failure                                                                              |                  | •                              |      |         |         |         |         |         |                                 |
| Effective length of fastener                                                                       |                  |                                | [mm] |         |         |         |         |         | min<br>(h <sub>ef</sub> ; 300mr |
| Outside diameter of fastener                                                                       | d <sub>nom</sub> | [mm]                           | 10   | 12      | 16      | 20      | 24      | 30      |                                 |
| Installation factor                                                                                |                  | γ <sub>inst</sub>              | [-]  | 1,0     |         |         |         |         |                                 |
|                                                                                                    |                  |                                |      |         |         |         |         |         |                                 |

<sup>&</sup>lt;sup>1)</sup> Fastenings (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element.

<sup>2)</sup> For IG-M20 strength class 50 is valid

| Spitec Oy Injection system Lionfix, Lionfix N for concrete                             |           |
|----------------------------------------------------------------------------------------|-----------|
| Performances Characteristic values of shear loads under static and quasi-static action | Annex C 6 |



|                      | r size reinforcing                            | bar                        |                      |                      | Ø8                                             | Ø 10       | Ø 12       | Ø 14       | Ø 16              | Ø 20           | Ø 25    | Ø 28     | Ø 32 |
|----------------------|-----------------------------------------------|----------------------------|----------------------|----------------------|------------------------------------------------|------------|------------|------------|-------------------|----------------|---------|----------|------|
| Steel fa             |                                               |                            | T                    |                      |                                                |            |            |            |                   | 1              |         |          |      |
| Charac               | teristic tension resi                         | stance                     | N <sub>Rk,s</sub>    | [kN]                 | A <sub>s</sub> · f <sub>uk</sub> <sup>1)</sup> |            |            |            |                   |                |         |          |      |
| Cross s              | section area                                  |                            | $A_s$                | [mm²]                | 50                                             | 79         | 113        | 154        | 201               | 314            | 491     | 616      | 804  |
| Partial 1            | factor                                        |                            | γMs,N                | [-]                  |                                                |            |            |            | 1,4 <sup>2)</sup> |                |         |          |      |
| Combi                | ned pull-out and o                            | concrete fail              | ure                  |                      |                                                |            |            |            |                   |                |         |          |      |
| Charac               | teristic bond resista                         | ance in non-c              | racked cond          | crete C20/2          | 25                                             |            |            |            |                   |                |         |          |      |
| മ                    | I: 40°C/24°C                                  | Dry, wet                   |                      |                      | 10                                             | 12         | 12         | 12         | 12                | 12             | 11      | 10       | 8,5  |
| Temperature<br>range | II: 80°C/50°C                                 | concrete                   |                      |                      | 7,5                                            | 9          | 9          | 9          | 9                 | 9              | 8,0     | 7,0      | 6,0  |
| ıperatı<br>range     | III: 120°C/72°C                               |                            | τ <sub>Rk,ucr</sub>  | [N/mm <sup>2</sup> ] | 5,5                                            | 6,5        | 6,5        | 6,5        | 6,5               | 6,5            | 6,0     | 5,0      | 4,5  |
| a m                  | 1: 40°C/24°C                                  | flooded                    | 1,20.                | -                    | 7,5                                            | 8,5        | 8,5        | 8,5        | 8,5               | N              | lo Perf | ormano   | :e   |
| <u>1</u> e           | II: 80°C/50°C hoded bore hole                 |                            |                      |                      | 5,5<br>4,0                                     | 6,5<br>5,0 | 6,5<br>5,0 | 6,5<br>5,0 | 6,5<br>5,0        | A              | ssesse  | ed (NPA  | 4)   |
| Charac               | teristic bond resista                         | l<br>ance in crack         | ed concrete          | C20/25               | 4,0                                            | 5,0        | 5,0        | 5,0        | 3,0               | 1              |         |          |      |
|                      | I: 40°C/24°C                                  |                            |                      | 020/23               | 4,0                                            | 5,0        | 5,5        | 5,5        | 5,5               | 5,5            | 5,5     | 6,5      | 6,5  |
| Temperature<br>range | II: 80°C/50°C                                 | Dry, wet                   |                      |                      | 2,5                                            | 3,5        | 4,0        | 4,0        | 4,0               | 4,0            | 4,0     | 4,5      | 4,5  |
| rati<br>ge           | III: 120°C/72°C                               | concrete                   |                      |                      | 2,0                                            | 2,5        | 3,0        | 3,0        | 3,0               | 3,0            | 3,0     | 3,5      | 3,5  |
| ıperat<br>range      | I: 40°C/24°C                                  |                            | <sup>τ</sup> Rk,cr   | [N/mm <sup>2</sup> ] | 4,0                                            | 4,0        | 5,5        | 5,5        | 5,5               | No Performance |         |          |      |
| en_                  | II: 80°C/50°C                                 | flooded                    |                      |                      | 2,5                                            | 3,0        | 4,0        | 4,0        | 4,0               | Assessed (NPA) |         |          |      |
|                      | III: 120°C/72°C                               | bore hole                  |                      |                      | 2,0                                            | 2,5        | 3,0        | 3,0        | 3,0               |                | ssesse  | ea (INP) | 1)   |
| Redukt               | ion factor ψ <sup>0</sup> sus in              | cracked and                | non-cracke           | d concrete           | C20/2                                          | 5          |            |            |                   |                |         |          |      |
|                      | I: 40°C/24°C                                  | Dry, wet concrete          |                      |                      | 0,73                                           |            |            |            |                   |                |         |          |      |
| Temperature<br>range | II: 80°C/50°C                                 | and                        | $\psi^0_{ { m sus}}$ | [-]                  | 0,65                                           |            |            |            |                   |                |         |          |      |
| Ten                  | III: 120°C/72°C                               | bore hole                  |                      |                      | 0,57                                           |            |            |            |                   |                |         |          |      |
|                      |                                               |                            | C25                  | /30                  |                                                | 1,02       |            |            |                   |                |         |          |      |
|                      |                                               |                            | C30                  | /37                  | 1,04                                           |            |            |            |                   |                |         |          |      |
| Increas              | sing factors for cond                         | crete                      | C35                  | /45                  | 1,07                                           |            |            |            |                   |                |         |          |      |
| $\Psi_{C}$           |                                               |                            | C40                  | /50                  |                                                |            |            |            | 1,08              |                |         |          |      |
|                      |                                               |                            | C45                  |                      | 1,09                                           |            |            |            |                   |                |         |          |      |
|                      |                                               |                            | C50                  | /60                  |                                                |            |            |            | 1,10              |                |         |          |      |
|                      | ete cone failure                              |                            |                      |                      |                                                |            |            |            |                   |                |         |          |      |
|                      | nt parameter                                  |                            |                      |                      |                                                |            |            | see        | Table             | C2             |         |          |      |
| Splittin             | -                                             |                            |                      |                      |                                                |            |            |            |                   |                |         |          |      |
|                      | nt parameter                                  |                            |                      |                      |                                                |            |            | see        | Table             | C2             |         |          |      |
|                      | ation factor                                  |                            | -                    |                      |                                                |            |            |            |                   |                |         |          |      |
|                      | and wet concrete                              |                            | $\gamma_{inst}$      | [-]                  | 1,2                                            |            |            |            | 1                 | ,2             |         |          |      |
| for floo             | ded bore hole                                 |                            | 111151               |                      |                                                |            | 1,4        |            |                   |                | N       | PA       |      |
| 1) fuk sh            | nall be taken from th<br>sence of national re | e specificatio<br>gulation | ns of reinforc       | ing bars             |                                                |            | ,          |            |                   |                |         |          |      |

| Spitec Oy Injection system Lionfix, Lionfix N for concrete                               |           |
|------------------------------------------------------------------------------------------|-----------|
| Performances Characteristic values of tension loads under static and quasi-static action | Annex C 7 |

## Page 23 of European Technical Assessment ETA-19/0849 of 28 January 2020

English translation prepared by DIBt



| Anchor size reinforcing bar     |                                |       | Ø8                                                                         | Ø 10 | Ø 12 | Ø 14 | Ø 16                 | Ø 20               | Ø 25 | Ø 28 | Ø 32 |
|---------------------------------|--------------------------------|-------|----------------------------------------------------------------------------|------|------|------|----------------------|--------------------|------|------|------|
| Steel failure without lever arm |                                |       |                                                                            |      | •    |      |                      | •                  |      |      |      |
| Characteristic shear resistance | V <sup>0</sup> <sub>Rk,s</sub> | [kN]  |                                                                            |      |      | 0,5  | 0 · A <sub>s</sub> · | f <sub>uk</sub> 1) |      |      |      |
| Cross section area              | A <sub>s</sub>                 | [mm²] | 50                                                                         | 79   | 113  | 154  | 201                  | 314                | 491  | 616  | 804  |
| Partial factor                  | γ <sub>Ms,V</sub>              | [-]   |                                                                            |      |      |      | 1,5 <sup>2)</sup>    |                    |      |      |      |
| Ductility factor                | [-]                            |       |                                                                            |      |      | 1,0  |                      |                    |      |      |      |
| Steel failure with lever arm    | ·                              | •     |                                                                            |      |      |      |                      |                    |      |      |      |
| Characteristic bending moment   | М <sup>0</sup> Rk,s            | [Nm]  |                                                                            |      |      | 1.2  | · W <sub>el</sub> ·  | f <sub>uk</sub> 1) |      |      |      |
| Elastic section modulus         | W <sub>el</sub>                | [mm³] | 50                                                                         | 98   | 170  | 269  | 402                  | 785                | 1534 | 2155 | 3217 |
| Partial factor                  | γ <sub>Ms,V</sub>              | [-]   |                                                                            |      | •    | •    | 1,5 <sup>2)</sup>    | •                  |      |      |      |
| Concrete pry-out failure        |                                |       | 1                                                                          |      |      |      |                      |                    |      |      |      |
| Factor                          | k <sub>8</sub>                 | [-]   |                                                                            |      |      |      | 2,0                  |                    |      |      |      |
| Installation factor             | γ <sub>inst</sub>              | [-]   |                                                                            |      |      |      | 1,0                  |                    |      |      |      |
| Concrete edge failure           | <b>-</b>                       |       |                                                                            |      |      |      |                      |                    |      |      |      |
| Effective length of fastener    | I <sub>f</sub>                 | [mm]  | min(h <sub>ef</sub> ; 12 • d <sub>nom</sub> ) min(h <sub>ef</sub> ; 300mm) |      |      |      |                      | mm)                |      |      |      |
| Outside diameter of fastener    | d <sub>nom</sub>               | [mm]  | 8                                                                          | 10   | 12   | 14   | 16                   | 20                 | 25   | 28   | 32   |
| Installation factor             | γ <sub>inst</sub>              | [-]   | 1,0                                                                        |      |      |      |                      |                    |      |      |      |

 $<sup>^{1)}\,</sup>f_{uk}$  shall be taken from the specifications of reinforcing bars  $^{2)}$  in absence of national regulation

| Annex C 8 |
|-----------|
|           |



| Table C9: Dis                        | placements                   | s under tension load <sup>1</sup> | ) (thread | ded rod | )     |       |       |       |       |       |  |
|--------------------------------------|------------------------------|-----------------------------------|-----------|---------|-------|-------|-------|-------|-------|-------|--|
| Anchor size thread                   | Anchor size threaded rod     |                                   |           |         |       | M16   | M20   | M24   | M27   | M30   |  |
| Non-cracked concre                   | ete C20/25 u                 | nder static and quasi-            | static ac | tion    |       |       |       |       |       |       |  |
| Temperature range                    | $\delta_{\text{N0}}$ -factor | [mm/(N/mm²)]                      | 0,021     | 0,023   | 0,026 | 0,031 | 0,036 | 0,041 | 0,045 | 0,049 |  |
| I: 40°C/24°C                         | $\delta_{N\infty}$ -factor   | [mm/(N/mm²)]                      | 0,030     | 0,033   | 0,037 | 0,045 | 0,052 | 0,060 | 0,065 | 0,071 |  |
| Temperature range                    | $\delta_{\text{N0}}$ -factor | [mm/(N/mm²)]                      | 0,050     | 0,056   | 0,063 | 0,075 | 0,088 | 0,100 | 0,110 | 0,119 |  |
| II: 80°C/50°C                        | $\delta_{N\infty}$ -factor   | [mm/(N/mm²)]                      | 0,072     | 0,081   | 0,090 | 0,108 | 0,127 | 0,145 | 0,159 | 0,172 |  |
| Temperature range<br>III: 120°C/72°C | $\delta_{\text{N0}}$ -factor | [mm/(N/mm²)]                      | 0,050     | 0,056   | 0,063 | 0,075 | 0,088 | 0,100 | 0,110 | 0,119 |  |
|                                      | $\delta_{N\infty}$ -factor   | [mm/(N/mm²)]                      | 0,072     | 0,081   | 0,090 | 0,108 | 0,127 | 0,145 | 0,159 | 0,172 |  |
| Cracked concrete C                   | 20/25 under                  | static and quasi-stati            | c action  |         |       |       |       |       |       |       |  |
| Temperature range                    | $\delta_{\text{N0}}$ -factor | [mm/(N/mm²)]                      | 0,0       | 90      |       |       | 0,0   | 70    |       |       |  |
| I: 40°C/24°C                         | $\delta_{N\infty}$ -factor   | [mm/(N/mm²)]                      | 0,1       | 05      | 0,105 |       |       |       |       |       |  |
| Temperature range                    | $\delta_{\text{N0}}$ -factor | [mm/(N/mm²)]                      | 0,2       | 219     |       |       | 0,1   | 70    |       |       |  |
| II: 80°C/50°C                        | δ <sub>N∞</sub> -factor      | [mm/(N/mm²)]                      | 0,2       | 255     |       |       | 0,2   | 245   |       |       |  |
| Temperature range                    | $\delta_{\text{N0}}$ -factor | [mm/(N/mm²)]                      | 0,2       | 219     |       |       | 0,1   | 70    |       |       |  |
| 111. 1000C/700C                      | $\delta_{N\infty}$ -factor   | [mm/(N/mm²)]                      | 0,2       | 255     |       |       | 0,2   | 245   |       |       |  |

Calculation of the displacement  $\delta_{N0} = \delta_{N0}\text{-factor} \quad \cdot \ \tau; \qquad \quad \tau\text{: action bond stress for tension}$ 

 $\delta_{N_{\infty}} = \delta_{N_{\infty}}$ -factor  $\cdot \tau$ ;

#### Displacements under shear load<sup>1)</sup> (threaded rod) Table C10:

| Anchor size threaded rod                                         |                              |                          | М8     | M10  | M12  | M16  | M20  | M24  | M27  | M30  |  |
|------------------------------------------------------------------|------------------------------|--------------------------|--------|------|------|------|------|------|------|------|--|
| Non-cracked concrete C20/25 under static and quasi-static action |                              |                          |        |      |      |      |      |      |      |      |  |
| All temperature ranges                                           | $\delta_{\text{V0}}$ -factor | [mm/kN]                  | 0,06   | 0,06 | 0,05 | 0,04 | 0,04 | 0,03 | 0,03 | 0,03 |  |
|                                                                  | $\delta_{V\infty}$ -factor   | [mm/kN]                  | 0,09   | 0,08 | 0,08 | 0,06 | 0,06 | 0,05 | 0,05 | 0,05 |  |
| Cracked concrete C                                               | 220/25 under                 | static and quasi-station | action |      |      |      |      |      |      |      |  |
| All temperature                                                  | $\delta_{V0}$ -factor        | [mm/kN]                  | 0,12   | 0,12 | 0,11 | 0,10 | 0,09 | 0,08 | 0,08 | 0,07 |  |
| ranges                                                           | $\delta_{V\infty}$ -factor   | [mm/kN]                  | 0,18   | 0,18 | 0,17 | 0,15 | 0,14 | 0,13 | 0,12 | 0,10 |  |

 $^{1)}$  Calculation of the displacement  $\delta_{V0} = \delta_{V0}\text{-factor} \ \cdot \ V; \qquad \qquad V\text{: action shear load} \\ \delta_{V\infty} = \delta_{V\infty}\text{-factor} \ \cdot \ V;$ 

| Spitec Oy Injection system Lionfix, Lionfix N for concrete |           |
|------------------------------------------------------------|-----------|
| Performances                                               | Annex C 9 |
| Displacements (threaded rods)                              |           |
|                                                            |           |



| Table C11: Dis                  | splacements (                | under tension loa  | ad <sup>1)</sup> (Intern | al threade | d anchor r | od)    |        |        |
|---------------------------------|------------------------------|--------------------|--------------------------|------------|------------|--------|--------|--------|
| Anchor size Interna             | al threaded a                | nchor rod          | IG-M6                    | IG-M8      | IG-M10     | IG-M12 | IG-M16 | IG-M20 |
| Non-cracked concre              | ete C20/25 und               | ler static and qua | si-static ac             | tion       |            |        |        |        |
| Temperature range               | $\delta_{N0}$ -factor        | [mm/(N/mm²)]       | 0,023                    | 0,026      | 0,031      | 0,036  | 0,041  | 0,049  |
| I: 40°C/24°C                    | $\delta_{N\infty}$ -factor   | [mm/(N/mm²)]       | 0,033                    | 0,037      | 0,045      | 0,052  | 0,060  | 0,071  |
| Temperature range II: 80°C/50°C | $\delta_{\text{N0}}$ -factor | [mm/(N/mm²)]       | 0,056                    | 0,063      | 0,075      | 0,088  | 0,100  | 0,119  |
|                                 | $\delta_{N\infty}$ -factor   | [mm/(N/mm²)]       | 0,081                    | 0,090      | 0,108      | 0,127  | 0,145  | 0,172  |
| Temperature range               | $\delta_{\text{N0}}$ -factor | [mm/(N/mm²)]       | 0,056                    | 0,063      | 0,075      | 0,088  | 0,100  | 0,119  |
| III: 120°C/72°C                 | $\delta_{N\infty}$ -factor   | [mm/(N/mm²)]       | 0,081                    | 0,090      | 0,108      | 0,127  | 0,145  | 0,172  |
| Cracked concrete C              | 20/25 under s                | tatic and quasi-st | atic action              |            |            |        |        |        |
| Temperature range               | $\delta_{\text{N0}}$ -factor | [mm/(N/mm²)]       | 0,090                    |            |            | 0,070  |        |        |
| I: 40°C/24°C                    | $\delta_{N\infty}$ -factor   | [mm/(N/mm²)]       | 0,105                    |            |            | 0,105  |        |        |
| Temperature range               | $\delta_{\text{N0}}$ -factor | [mm/(N/mm²)]       | 0,219                    |            |            | 0,170  |        |        |
| II: 80°C/50°C                   | $\delta_{N\infty}$ -factor   | [mm/(N/mm²)]       | 0,255                    |            |            | 0,245  |        | ·      |
| Temperature range               | $\delta_{\text{N0}}$ -factor | [mm/(N/mm²)]       | 0,219                    |            |            | 0,170  |        |        |
|                                 | $\delta_{N\infty}$ -factor   | [mm/(N/mm²)]       | 0,255                    |            |            | 0,245  |        |        |

<sup>1)</sup> Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \ \cdot \tau;$ 

 $\tau$ : action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty} \text{-factor} \quad \cdot \ \tau;$ 

Displacements under shear load<sup>1)</sup> (Internal threaded anchor rod) Table C12:

| Anchor size Inte                                                             | ernal threaded               | anchor rod | IG-M6 | IG-M8 | IG-M10 | IG-M12 | IG-M16 | IG-M20 |  |  |  |  |
|------------------------------------------------------------------------------|------------------------------|------------|-------|-------|--------|--------|--------|--------|--|--|--|--|
| Non-cracked and cracked concrete C20/25 under static and quasi-static action |                              |            |       |       |        |        |        |        |  |  |  |  |
| All temperature                                                              | $\delta_{\text{V0}}$ -factor | [mm/kN]    | 0,07  | 0,06  | 0,06   | 0,05   | 0,04   | 0,04   |  |  |  |  |
| ranges                                                                       | δ <sub>V∞</sub> -factor      | [mm/kN]    | 0,10  | 0,09  | 0,08   | 0,08   | 0,06   | 0,06   |  |  |  |  |

<sup>1)</sup> Calculation of the displacement

$$\begin{split} \delta_{\text{V0}} &= \delta_{\text{V0}}\text{-factor} &\cdot \text{V}; \\ \delta_{\text{V}_{\infty}} &= \delta_{\text{V}_{\infty}}\text{-factor} &\cdot \text{V}; \end{split}$$

V: action shear load

| Spitec Oy Injection system Lionfix, Lionfix N for concrete |            |
|------------------------------------------------------------|------------|
| Performances                                               | Annex C 10 |
| Displacements (Internal threaded anchor rod)               |            |
|                                                            |            |



| Table C13: Displacements under tension load <sup>1)</sup> (rebar) |                              |                   |           |           |       |       |       |       |       |       |       |
|-------------------------------------------------------------------|------------------------------|-------------------|-----------|-----------|-------|-------|-------|-------|-------|-------|-------|
| Anchor size reinfo                                                | orcing bar                   |                   | Ø8        | Ø 10      | Ø 12  | Ø 14  | Ø 16  | Ø 20  | Ø 25  | Ø 28  | Ø 32  |
| Non-cracked conc                                                  | rete C20/25                  | under static an   | nd quasi  | -static a | ction |       |       |       |       |       |       |
| Temperature                                                       | $\delta_{\text{N0}}$ -factor | [mm/(N/mm²)]      | 0,021     | 0,023     | 0,026 | 0,028 | 0,031 | 0,036 | 0,043 | 0,047 | 0,052 |
| range I: 40°C/24°C                                                | $\delta_{N\infty}$ -factor   | [mm/(N/mm²)]      | 0,030     | 0,033     | 0,037 | 0,041 | 0,045 | 0,052 | 0,061 | 0,071 | 0,075 |
| Temperature                                                       | $\delta_{\text{N0}}$ -factor | [mm/(N/mm²)]      | 0,050     | 0,056     | 0,063 | 0,069 | 0,075 | 0,088 | 0,104 | 0,113 | 0,126 |
| range II:<br>80°C/50°C                                            | $\delta_{N\infty}$ -factor   | [mm/(N/mm²)]      | 0,072     | 0,081     | 0,090 | 0,099 | 0,108 | 0,127 | 0,149 | 0,163 | 0,181 |
| Temperature                                                       | $\delta_{\text{N0}}$ -factor | [mm/(N/mm²)]      | 0,050     | 0,056     | 0,063 | 0,069 | 0,075 | 0,088 | 0,104 | 0,113 | 0,126 |
| range III:<br>120°C/72°C                                          | $\delta_{N\infty}$ -factor   | [mm/(N/mm²)]      | 0,072     | 0,081     | 0,090 | 0,099 | 0,108 | 0,127 | 0,149 | 0,163 | 0,181 |
| Cracked concrete                                                  | C20/25 und                   | ler static and qu | ıasi-stat | ic actior | 1     |       |       |       |       |       |       |
| Temperature                                                       | $\delta_{\text{N0}}$ -factor | [mm/(N/mm²)]      | 0,0       | 90        |       |       |       | 0,070 |       |       |       |
| range I: 40°C/24°C                                                | $\delta_{N\infty}$ -factor   | [mm/(N/mm²)]      | 0,1       | 05        |       |       |       | 0,105 |       |       |       |
| Temperature                                                       | $\delta_{\text{N0}}$ -factor | [mm/(N/mm²)]      | 0,2       | 219       |       |       |       | 0,170 |       |       |       |
| range II:<br>80°C/50°C                                            | $\delta_{N\infty}$ -factor   | [mm/(N/mm²)]      | 0,2       | 255       |       |       |       | 0,245 |       |       |       |
| Temperature                                                       | $\delta_{\text{N0}}$ -factor | [mm/(N/mm²)]      | 0,2       | 219       |       |       |       | 0,170 |       |       |       |
| range III:<br>120°C/72°C                                          | $\delta_{N\infty}$ -factor   | [mm/(N/mm²)]      | 0,2       | 255       |       |       |       | 0,245 |       |       |       |

<sup>1)</sup> Calculation of the displacement

 $\delta_{N0} = \delta_{N0}\text{-factor} \cdot \tau;$ 

τ: action bond stress for tension

## Table C14: Displacement under shear load<sup>1)</sup> (rebar)

|                                                                  |                             |                   | _         | -         |      |      |      |      |      |      |      |
|------------------------------------------------------------------|-----------------------------|-------------------|-----------|-----------|------|------|------|------|------|------|------|
| Anchor size reinf                                                | Ø8                          | Ø 10              | Ø 12      | Ø 14      | Ø 16 | Ø 20 | Ø 25 | Ø 28 | Ø 32 |      |      |
| Non-cracked concrete C20/25 under static and quasi-static action |                             |                   |           |           |      |      |      |      |      |      |      |
| All temperature ranges                                           | $\delta_{V0}$ -factor       | [mm/kN]           | 0,06      | 0,05      | 0,05 | 0,04 | 0,04 | 0,04 | 0,03 | 0,03 | 0,03 |
|                                                                  | $\delta_{V\infty}$ -factor  | [mm/kN]           | 0,09      | 0,08      | 0,08 | 0,06 | 0,06 | 0,05 | 0,05 | 0,04 | 0,04 |
| Cracked concrete                                                 | C20/25 und                  | der static and qu | ıasi-stat | ic actior | 1    |      |      |      |      |      |      |
| All temperature ranges                                           | δ <sub>V0</sub> -factor     | [mm/kN]           | 0,12      | 0,12      | 0,11 | 0,11 | 0,10 | 0,09 | 0,08 | 0,07 | 0,06 |
|                                                                  | δ <sub>V∞</sub> -<br>factor | [mm/kN]           | 0,18      | 0,18      | 0,17 | 0,16 | 0,15 | 0,14 | 0,12 | 0,11 | 0,10 |

<sup>1)</sup> Calculation of the displacement

$$\begin{split} \delta_{V0} &= \delta_{V0}\text{-factor} \quad V; \\ \delta_{V\infty} &= \delta_{V\infty}\text{-factor} \quad V; \end{split}$$

V: action shear load

| Spitec Ov Injection system | Lionfix | Lionfix N for concrete |
|----------------------------|---------|------------------------|

### **Performances**

Displacements (rebar)

Annex C 11

 $<sup>\</sup>delta_{N_{\infty}} = \delta_{N_{\infty}}\text{-factor }\cdot \tau;$ 



| Ancho                                          | r siz  | e threaded ro                | d                         |                      |                      | M8   | M10 | M12 | M16    | M20                                            | M24 | M27 | M30 |
|------------------------------------------------|--------|------------------------------|---------------------------|----------------------|----------------------|------|-----|-----|--------|------------------------------------------------|-----|-----|-----|
| Steel fa                                       | ailure | Э                            |                           | _                    |                      |      | •   |     |        |                                                |     |     |     |
| Charac                                         | teris  | tic tension resi             | stance                    | N <sub>Rk,s,eq</sub> | [kN]                 |      |     |     | 1,0 •  | $N_{Rk,s}$                                     |     |     |     |
| Partial                                        |        |                              |                           | γ <sub>Ms,N</sub>    | [-]                  |      |     |     | see Ta | ıble C1                                        |     |     |     |
|                                                |        |                              | concrete failure          |                      |                      |      |     |     |        |                                                |     |     |     |
| Charac                                         |        |                              | ance in non-crac          | ked and cracke       | ed concrete          | 1    |     |     |        |                                                | ı   |     | Ι   |
|                                                | l:     | 40°C/24°C                    |                           |                      |                      | 2,5  | 3,1 | 3,7 | 3,7    | 3,7                                            | 3,8 | 4,5 | 4,5 |
| ange                                           | II:    | 80°C/50°C                    | Dry, wet concrete         |                      |                      | 1,6  | 2,2 | 2,7 | 2,7    | 2,7                                            | 2,8 | 3,1 | 3,1 |
| ure r                                          | III:   | 120°C/72°C                   |                           | σ.                   | [N]/ma ma 2]         | 1,3  | 1,6 | 2,0 | 2,0    | 2,0                                            | 2,1 | 2,4 | 2,4 |
| oeratı                                         | l:     | 40°C/24°C                    | -                         | TRk,eq               | [N/mm <sup>2</sup> ] | 2,5  | 2,5 | 3,7 | 3,7    |                                                |     |     |     |
| Temperature range                              | II:    | 80°C/50°C                    | flooded bore<br>hole      |                      |                      | 1,6  | 1,9 | 2,7 | 2,7    | No Performance<br>Assessed (NPA)               |     |     |     |
| ·                                              | III:   | 120°C/72°C                   |                           |                      |                      | 1,3  | 1,6 | 2,0 | 2,0    |                                                |     | `   | ,   |
| Redukt                                         | ion f  | factor ψ <sup>0</sup> sus in | cracked and no            | n-cracked cond       | rete C20/25          |      |     | l   | l      | l                                              |     |     |     |
| ture                                           | l:     | 40°C/24°C                    | Dry, wet                  |                      |                      |      |     |     | 0,     | 73                                             |     |     |     |
| Temperature<br>range                           | II:    | 80°C/50°C                    | concrete and flooded bore | $\Psi^0_{sus}$       | [-]                  |      |     |     | 0,     | 65                                             |     |     |     |
| Tem                                            | III:   | 120°C/72°C                   | hole                      |                      |                      | 0,57 |     |     |        |                                                |     |     |     |
| Increas                                        | sing 1 | factors for con-             | crete ψ <sub>C</sub>      | C25/30 to C5         | <br>50/60            | 1,0  |     |     |        |                                                |     |     |     |
|                                                |        | one failure                  |                           |                      |                      | l    |     |     |        | <u>,                                      </u> |     |     |     |
|                                                |        | arameter                     |                           |                      |                      |      |     |     | see Ta | ıble C2                                        |     |     |     |
| Splittir                                       |        |                              |                           |                      |                      |      |     |     |        |                                                |     |     |     |
|                                                |        | arameter<br>n factor         |                           |                      |                      |      |     |     | see Ta | ible C2                                        |     |     |     |
|                                                |        |                              |                           |                      |                      | 1.0  |     |     |        | 1 2                                            |     |     |     |
| for dry and wet concrete for flooded bore hole |        |                              | $\gamma_{inst}$           | [-]                  | 1,0 1,2 NPA          |      |     |     |        |                                                |     |     |     |

| Spitec Oy Injection system Lionfix, Lionfix N for concrete                                         |            |
|----------------------------------------------------------------------------------------------------|------------|
| Performances Characteristic values of tension loads under seismic action (performance category C1) | Annex C 12 |



| (performance ca                              | tegory C1)             |          |                                                                          |     |     |      |                       |     |     |        |
|----------------------------------------------|------------------------|----------|--------------------------------------------------------------------------|-----|-----|------|-----------------------|-----|-----|--------|
| Anchor size threaded rod                     |                        |          | М8                                                                       | M10 | M12 | M16  | M20                   | M24 | M27 | M30    |
| Steel failure without lever arm              |                        |          |                                                                          |     |     |      |                       |     |     |        |
| Characteristic shear resistance (Seismic C1) | V <sub>Rk,s,eq</sub>   | [kN]     |                                                                          |     |     | 0,70 | ) • V <sup>0</sup> Rk | ,S  |     |        |
| Partial factor                               | γMs,V                  | [-]      | see Table C1                                                             |     |     |      |                       |     |     |        |
| Ductility factor                             | k <sub>7</sub>         | [-]      | 1,0                                                                      |     |     |      |                       |     |     |        |
| Steel failure with lever arm                 | 1                      |          |                                                                          |     |     |      |                       |     |     |        |
| Characteristic bending moment                | M <sup>0</sup> Rk,s,eq | [Nm<br>] | No Performance Assessed (NPA)                                            |     |     |      |                       |     |     |        |
| Concrete pry-out failure                     |                        |          |                                                                          |     |     |      |                       |     |     |        |
| Factor                                       | k <sub>8</sub>         | [-]      |                                                                          |     |     |      | 2,0                   |     |     |        |
| Installation factor                          | γinst                  | [-]      |                                                                          |     |     |      | 1,0                   |     |     |        |
| Concrete edge failure                        |                        |          |                                                                          |     |     |      |                       |     |     |        |
| Effective length of fastener                 | I <sub>f</sub>         | [mm      | min(h <sub>ef</sub> ; 12 • d <sub>nom</sub> ) min(h <sub>ef</sub> ; 300n |     |     |      |                       |     |     | 300mm) |
| Outside diameter of fastener                 | d <sub>nom</sub>       | [mm      | 8 10 12 16 20 24 27 3                                                    |     |     |      |                       |     | 30  |        |
| Installation factor                          | γinst                  | [-]      |                                                                          | •   | •   | •    | 1,0                   | •   |     | •      |
| Factor for annular gap                       | $\alpha_{\sf gap}$     | [-]      | 0,5 (1,0) <sup>1)</sup>                                                  |     |     |      |                       |     |     |        |

<sup>1)</sup> Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is required

| Spitec Oy Injection system Lionfix, Lionfix N for concrete                                       |            |
|--------------------------------------------------------------------------------------------------|------------|
| Performances Characteristic values of shear loads under seismic action (performance category C1) | Annex C 13 |



| Table C17: Characteri (performa          |                      | of tension             | ı loads uı | nder s            | eismic            | actio             | n                 |                      |                                  |                   |                   |                   |
|------------------------------------------|----------------------|------------------------|------------|-------------------|-------------------|-------------------|-------------------|----------------------|----------------------------------|-------------------|-------------------|-------------------|
| Anchor size reinforcing ba               | ar                   |                        |            | Ø8                | Ø 10              | Ø 12              | Ø 14              | Ø 16                 | Ø 20                             | Ø 25              | Ø 28              | Ø 32              |
| Steel failure                            |                      |                        |            |                   |                   |                   |                   |                      |                                  |                   |                   |                   |
| Characteristic tension resist            | tance                | N <sub>Rk,s,eq</sub>   | [kN]       |                   |                   |                   | 1,0               | • A <sub>s</sub> • f | uk 1)                            |                   |                   |                   |
| Cross section area                       |                      | A <sub>s</sub>         | [mm²]      | 50                | 79                | 113               | 154               | 201                  | 314                              | 491               | 616               | 804               |
| Partial factor                           |                      | γ <sub>Ms,N</sub>      | [-]        |                   |                   |                   |                   | 1,4 <sup>2)</sup>    |                                  |                   |                   |                   |
| Combined pull-out and concrete failure   |                      |                        |            |                   |                   |                   |                   |                      |                                  |                   |                   |                   |
| Characteristic bond resistan             | nce in non-c         | racked and d           | racked co  | ncrete            |                   | 5                 |                   |                      |                                  |                   |                   |                   |
| B                                        | Dry, wet<br>concrete |                        |            | 2,5<br>1,6<br>1,3 | 3,1<br>2,2<br>1,6 | 3,7<br>2,7<br>2,0 | 3,7<br>2,7<br>2,0 | 3,7<br>2,7<br>2,0    | 3,7<br>2,7<br>2,0                | 3,8<br>2,8<br>2,1 | 4,5<br>3,1<br>2,4 | 4,5<br>3,1<br>2,4 |
| 1: 40°C/24°C f                           | flooded<br>pore hole | <sup>⊤</sup> Rk, eq    | [N/mm²]    | 2,5<br>1,6<br>1,3 | 2,5<br>1,9<br>1,6 | 3,7<br>2,7<br>2,0 | 3,7<br>2,7<br>2,0 | 3,7<br>2,7<br>2,0    | No Performance<br>Assessed (NPA) |                   |                   | e                 |
| Reduktion factor ψ <sup>0</sup> sus in c | racked and           | non-cracked            | l concrete | C20/25            | 5                 |                   |                   |                      |                                  |                   |                   |                   |
|                                          | Dry, wet             |                        |            |                   |                   |                   |                   | 0,73                 |                                  |                   |                   |                   |
| jag ii: 80°C/50°C   a                    | and<br>flooded       | ${\psi^0}_{	ext{sus}}$ | [-]        |                   |                   |                   |                   | 0,65                 |                                  |                   |                   |                   |
| E   III: 120°C/72°C   L                  | oore hole            |                        |            | 0,57              |                   |                   |                   |                      |                                  |                   |                   |                   |
| Increasing factors for concre            | ete ψ <sub>C</sub>   | C25/30 to              | C50/60     |                   |                   |                   |                   | 1,0                  |                                  |                   |                   |                   |
| Concrete cone failure                    |                      |                        | '          |                   |                   |                   |                   |                      |                                  |                   |                   |                   |
| Relevant parameter                       |                      |                        |            |                   |                   |                   | sec               | Table                | C2                               |                   |                   |                   |
| Splitting                                |                      |                        |            |                   |                   |                   |                   |                      |                                  |                   |                   |                   |
| Relevant parameter                       |                      |                        |            | see Table C2      |                   |                   |                   |                      |                                  |                   |                   |                   |
| Installation factor                      |                      |                        |            |                   |                   | ·                 |                   |                      |                                  |                   |                   |                   |
| for dry and wet concrete                 |                      | ļ<br>γ <sub>inst</sub> | [-]        | 1,2               |                   |                   |                   | 1                    | ,2                               |                   |                   |                   |
| for flooded bore hole                    |                      | ' 11131                | L J        |                   |                   | 1,4               |                   |                      |                                  | NF                | PA                |                   |

 $<sup>\</sup>stackrel{1)}{}_{f_{uk}}$  shall be taken from the specifications of reinforcing bars  $\stackrel{2)}{}_{in}$  in absence of national regulation

| Spitec Oy Injection system Lionfix, Lionfix N for concrete                                         |            |
|----------------------------------------------------------------------------------------------------|------------|
| Performances Characteristic values of tension loads under seismic action (performance category C1) | Annex C 14 |



| Table C18: Characteristic va (performance cat |                                                | loads u | nder s            | eismic | actio                 | 1                   |                      |                    |       |                       |      |
|-----------------------------------------------|------------------------------------------------|---------|-------------------|--------|-----------------------|---------------------|----------------------|--------------------|-------|-----------------------|------|
| Anchor size reinforcing bar                   |                                                |         | Ø8                | Ø 10   | Ø 12                  | Ø 14                | Ø 16                 | Ø 20               | Ø 25  | Ø 28                  | Ø 32 |
| Steel failure without lever arm               |                                                |         |                   | •      | •                     | •                   | •                    | •                  | •     |                       |      |
| Characteristic shear resistance               | V <sub>Rk,s,eq</sub>                           | [kN]    |                   |        |                       | 0,3                 | 5 • A <sub>s</sub> • | f <sub>uk</sub> 2) |       |                       |      |
| Cross section area                            | A <sub>s</sub>                                 | [mm²]   | 50                | 79     | 113                   | 154                 | 201                  | 314                | 491   | 616                   | 804  |
| Partial factor                                | γ <sub>Ms,V</sub>                              | [-]     | 1,5 <sup>2)</sup> |        |                       |                     |                      |                    |       |                       |      |
| Ductility factor                              | k <sub>7</sub>                                 | [-]     | 1,0               |        |                       |                     |                      |                    |       |                       |      |
| Steel failure with lever arm                  |                                                |         |                   |        |                       |                     |                      |                    |       |                       |      |
| Characteristic bending moment                 | M <sup>0</sup> <sub>Rk,s,eq</sub>              | [Nm]    |                   |        | No Po                 | erforma             | nce As               | sessec             | (NPA) | 1                     |      |
| Concrete pry-out failure                      |                                                |         |                   |        |                       |                     |                      |                    |       |                       |      |
| Factor                                        | k <sub>8</sub>                                 | [-]     |                   |        |                       |                     | 2,0                  |                    |       |                       |      |
| Installation factor                           | γinst                                          | [-]     |                   |        |                       |                     | 1,0                  |                    |       |                       |      |
| Concrete edge failure                         | ·                                              |         |                   |        |                       |                     |                      |                    |       |                       |      |
| Effective length of fastener                  | If                                             | [mm]    |                   | mi     | n(h <sub>ef</sub> ; 1 | 2 • d <sub>no</sub> | m)                   |                    | min(  | h <sub>ef</sub> ; 300 | mm)  |
| Outside diameter of fastener                  | d <sub>nom</sub>                               | [mm]    | 8                 | 10     | 12                    | 14                  | 16                   | 20                 | 25    | 28                    | 32   |
| Installation factor                           | γinst                                          | [-]     |                   |        |                       |                     | 1,0                  |                    |       |                       |      |
| Factor for annular gap                        | $\alpha_{\rm gap}$ [-] 0,5 (1,0) <sup>3)</sup> |         |                   |        |                       |                     |                      |                    |       |                       |      |

| Spitec Oy Injection system Lionfix, Lionfix N for concrete                                       |            |
|--------------------------------------------------------------------------------------------------|------------|
| Performances Characteristic values of shear loads under seismic action (performance category C1) | Annex C 15 |

<sup>1)</sup> f<sub>uk</sub> shall be taken from the specifications of reinforcing bars
2) in absence of national regulation
3) Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is required



| Anchor size thread                                                                     |                                                                                                                                                                   | M8                                           | M10                               | M12                         | M16       | M20   | M24  | M27                     | M30  |      |      |  |
|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------|-----------------------------|-----------|-------|------|-------------------------|------|------|------|--|
| Cracked and non-c                                                                      | racked con                                                                                                                                                        | crete C20/25 und                             | der seis                          | mic C1                      | action    |       | •    |                         | •    |      | •    |  |
| Temperature range                                                                      | $\delta_{N0}$ -factor [mm/(N/mm <sup>2</sup> )]                                                                                                                   |                                              | 0,090                             |                             |           | 0,070 |      |                         |      |      |      |  |
| I: 40°C/24°C                                                                           | $\delta_{N\infty}$ -factor                                                                                                                                        | [mm/(N/mm²)]                                 |                                   | 0,105                       |           | 0,105 |      |                         |      |      |      |  |
| Temperature range                                                                      | $\delta_{\text{N0}}$ -factor                                                                                                                                      | [mm/(N/mm²)]                                 |                                   | 0,                          | 219       | 0,170 |      |                         |      |      |      |  |
| II: 80°C/50°C                                                                          | $\delta_{N\infty}$ -factor                                                                                                                                        | [mm/(N/mm²)]                                 |                                   | 0,255                       |           | 0,245 |      |                         |      |      |      |  |
| Temperature range                                                                      | $\delta_{\text{N0}}$ -factor                                                                                                                                      | [mm/(N/mm²)]                                 |                                   | 0,                          | 219       | 0,170 |      |                         |      |      |      |  |
| III: 120°C/72°C                                                                        | $\delta_{N\infty}$ -factor                                                                                                                                        | [mm/(N/mm²)]                                 |                                   | 0,255                       |           | 0,245 |      |                         |      |      |      |  |
|                                                                                        |                                                                                                                                                                   |                                              |                                   |                             |           |       |      |                         |      |      |      |  |
|                                                                                        | -                                                                                                                                                                 | ts under tensio                              | n load <sup>1</sup><br>Ø 8        | <sup>)</sup> (rebar         | )<br>Ø 12 | Ø 14  | Ø 16 | Ø 20                    | Ø 25 | Ø 28 | Ø 32 |  |
| Anchor size reinfo                                                                     | rcing bar                                                                                                                                                         |                                              | Ø8                                | Ø 10                        | Ø 12      | Ø 14  | Ø 16 | Ø 20                    | Ø 25 | Ø 28 | Ø 32 |  |
| Anchor size reinfo<br>Cracked and non-ci                                               | rcing bar                                                                                                                                                         |                                              | Ø 8<br>der seis                   | Ø 10                        | Ø 12      | Ø 14  | Ø 16 | Ø <b>20</b> 0,070       | Ø 25 | Ø 28 | Ø 32 |  |
| Anchor size reinfo                                                                     | rcing bar                                                                                                                                                         | crete C20/25 und                             | Ø 8<br>der seis                   | Ø 10                        | Ø 12      | Ø 14  | Ø 16 |                         | Ø 25 | Ø 28 | Ø 32 |  |
| Anchor size reinfo Cracked and non-co Temperature range                                | rcing bar racked cond $\delta_{N0}$ -factor                                                                                                                       | crete C20/25 und                             | Ø 8  der seis  0,0  0,1           | Ø 10<br>mic C1              | Ø 12      | Ø 14  | Ø 16 | 0,070                   | Ø 25 | Ø 28 | Ø 32 |  |
| Anchor size reinfo<br>Cracked and non-co<br>Temperature range<br>I: 40°C/24°C          | reing bar racked cond $\delta_{\text{No}}\text{-factor}$ $\delta_{\text{No}}\text{-factor}$                                                                       | [mm/(N/mm²)]<br>[mm/(N/mm²)]                 | Ø 8  der seis  0,0  0,1  0,2      | Ø 10<br>mic C1<br>090       | Ø 12      | Ø 14  | Ø 16 | 0,070                   | Ø 25 | Ø 28 | Ø 32 |  |
| Anchor size reinfo Cracked and non-cr Temperature range I: 40°C/24°C Temperature range | rcing bar racked cond $\delta_{\text{N0}}\text{-factor}$ $\delta_{\text{No}}\text{-factor}$ $\delta_{\text{N0}}\text{-factor}$ $\delta_{\text{N0}}\text{-factor}$ | [mm/(N/mm²)]<br>[mm/(N/mm²)]<br>[mm/(N/mm²)] | Ø 8  der seis  0,0  0,1  0,2  0,2 | Ø 10<br>mic C1<br>090<br>05 | Ø 12      | Ø 14  | Ø 16 | 0,070<br>0,105<br>0,170 | Ø 25 | Ø 28 | Ø 32 |  |

<sup>1)</sup> Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor  $\cdot \tau$ ;

τ: action bond stress for tension

 $\delta_{N_{\infty}} = \delta_{N_{\infty}} \text{-factor} \quad \tau,$ 

## Table C21: Displacements under shear load<sup>2)</sup> (threaded rod)

| Anchor size threaded rod                                        |                            |         | М8   | M10  | M12  | M16  | M20  | M24  | M27  | M30  |
|-----------------------------------------------------------------|----------------------------|---------|------|------|------|------|------|------|------|------|
| Cracked and non-cracked concrete C20/25 under seismic C1 action |                            |         |      |      |      |      |      |      |      |      |
| All temperature                                                 | δ <sub>vo</sub> -factor    | [mm/kN] | 0,12 | 0,12 | 0,11 | 0,10 | 0,09 | 0,08 | 0,08 | 0,07 |
| ranges                                                          | $\delta_{V\infty}$ -factor | [mm/kN] | 0,18 | 0,18 | 0,17 | 0,15 | 0,14 | 0,13 | 0,12 | 0,10 |

## Table C22: Displacement under shear load<sup>1)</sup> (rebar)

| Anchor size reinforcing bar                                     |                         |         | Ø8   | Ø 10 | Ø 12 | Ø 14 | Ø 16 | Ø 20 | Ø 25 | Ø 28 | Ø 32 |
|-----------------------------------------------------------------|-------------------------|---------|------|------|------|------|------|------|------|------|------|
| Cracked and non-cracked concrete C20/25 under seismic C1 action |                         |         |      |      |      |      |      |      |      |      |      |
| All temperature                                                 | $\delta_{V0}$ -factor   | [mm/kN] | 0,12 | 0,12 | 0,11 | 0,11 | 0,10 | 0,09 | 0,08 | 0,07 | 0,06 |
| ranges                                                          | δ <sub>v∞</sub> -factor | [mm/kN] | 0,18 | 0,18 | 0,17 | 0,16 | 0,15 | 0,14 | 0,12 | 0,11 | 0,10 |

<sup>1)</sup> Calculation of the displacement

 $\delta_{V0} = \delta_{V0}\text{-factor} \ \cdot \ V;$ 

V: action shear load

 $\delta_{V_{\infty}} = \delta_{V_{\infty}} \text{-factor} \quad V;$ 

| Spitec Oy Injection system Lionfix, Lionfix N for concrete                   |            |
|------------------------------------------------------------------------------|------------|
| Performances Displacements under seismic C1 action (threaded rods and rebar) | Annex C 16 |